
Cong Ma, Zhaoyi Ge, Max Jung, Yizhou Zhang 
University of Waterloo

Zero-Cost Lexical Effect Handlers



Effect handler

Effect handlers subsume an array of control flow features: async/await, 
coroutine, generator…


Dynamically scoped handler has a modularity problem, and lexically scoped 
handler restores the modularity.

Background



Effect handler

Effect handlers subsume an array of control flow features: async/await, 
coroutine, generator…


Dynamically scoped handler has a modularity problem, and lexically scoped 
handler restores the modularity.

Background



Accidental Handling

Framework1

Framework2

Framework3

Plugin1

Plugin2

Plugin3

Modern softwares are built with modular components, which are designed to be 
interchangeable.

Background



Accidental Handling
Modern softwares are built with modular components, which are designed to be 
interchangeable.


However, dynamically scoped handler breaks the modularity.

Background



Accidental Handling
However, dynamically scoped handler breaks the modularity.


Background



Accidental Handling
However, dynamically scoped handler breaks the modularity.


Assuming you are an application developer, and you want to monitor the usage 
of the plugin by the framework.

Background

#application 
let plugin = λx. … in 
let framework = λf. … in 
framework(plugin) 



Accidental Handling
However, dynamically scoped handler breaks the modularity.


Assuming you are an application developer, and you want to monitor the usage 
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This is similar to the abstraction problem with 
dynamically scoped variables.
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An example illustrating its operational semantics.

handle 
  (raise ask()) + 1 
with ask = 
  λk. resume k 42
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Lexical effect handler 101
Background

Programs built with lexical effect handlers enjoy modularity.

Yizhou Zhang and Andrew C. Myers. Abstraction-safe effect handlers via tunneling. Proc. of the ACM on 
Programming Languages (PACMPL), 3(POPL), January 2019


Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. Binders by day, labels by night: effect 
instances via lexically scoped handlers. Proc. of the ACM on Programming Languages (PACMPL), 4(POPL), 
January 2020
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However, existing implementations impose a runtime cost

def f(n, exception_handler) = 
  ""... 
  if (bad) 
    raise exception_handler(…); 
  ""...

All effectful functions need to explicitly 
receive handler labels as arguments.


This imposes a runtime cost even for 
rarely raised effects.
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Zero-Cost Lexical Effect Handlers

In this work, we present a type-directed compilation that eliminates the runtime 
cost for having handlers in the lexical context. This compilation design obeys 
zero-cost principle.



#main 
let f = λ(x, h1, h2). 

raise h1(x); raise h2(x) 
let g = λ(x, h). 
        handle 
          f(x, h, log) 
        with log = ""... 
in 
handle 
 g(42, log) 
with log = ""...

Zero-Cost Lexical Effect Handlers, Example 1

We will first see an execution with 
the lexical effect handler semantics.


We will then figure out how to make 
the semantics zero-cost!
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This semantics finds the handler by walking 
the stack, so its performance characteristics 
is similar to dynamically scoped handlers.


Moreover, it walks the stack more “carefully” 
and simulates the behavior of lexically 
scoped handlers, so it enjoys modularity. 
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Our compilation can also deal with higher-order functions.



#main 
let  
  g = Λα.λ(x, f: [α]N"->N).f(x) 
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handle 
  handle 
    let  
      f = λ(x).raise log(x); raise exc() 
    in 
      g[log, exc](42, f) 
  with log: Logging = … 
with exc: Exception = ""...
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  g(log) 
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  ""...

We formally defined the source and targe languages and 
proved that the compilation is semantic-preserving.
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Evaluation

Hypothesis: effect handlers that are rarely used benefit from zero-cost 
implementation.



Evaluation
A program with two coorperativley scheduled co-routine.


A larger value on x-axis means less frequent yielding, so zero-cost strategy is 
more efficient.
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