
Cong Ma, Zhaoyi Ge, Max Jung, Yizhou Zhang
University of Waterloo

Zero-Cost Lexical Effect Handlers

Effect handler

Effect handlers subsume an array of control flow features: async/await,
coroutine, generator…

Dynamically scoped handler has a modularity problem, and lexically scoped
handler restores the modularity.

Background

Effect handler

Effect handlers subsume an array of control flow features: async/await,
coroutine, generator…

Dynamically scoped handler has a modularity problem, and lexically scoped
handler restores the modularity.

Background

Accidental Handling

Framework1

Framework2

Framework3

Plugin1

Plugin2

Plugin3

Modern softwares are built with modular components, which are designed to be
interchangeable.

Background

Accidental Handling
Modern softwares are built with modular components, which are designed to be
interchangeable.

However, dynamically scoped handler breaks the modularity.

Background

Accidental Handling
However, dynamically scoped handler breaks the modularity.

Background

Accidental Handling
However, dynamically scoped handler breaks the modularity.

Assuming you are an application developer, and you want to monitor the usage
of the plugin by the framework.

Background

#application
let plugin = λx. … in
let framework = λf. … in
framework(plugin)

Accidental Handling
However, dynamically scoped handler breaks the modularity.

Assuming you are an application developer, and you want to monitor the usage
of the plugin by the framework.

#application
let plugin = λx. … in
let framework = λf. … in
handle
 framework(λx.plugin x; raise Logging(…))
with Logging:
 λx,k. print(x); resume k

Background

Accidental Handling
#application
let plugin = λx. … in
let framework = λf. … in
handle
 framework(λx.plugin x; raise Logging(…))
with Logging:
 λx,k. print(x); resume k

Background

Accidental Handling

application

framework

plugin

Stack

Black triangle denotes a handler

Red arrow denotes a raised effect

Code

#application
let plugin = λx. … in
let framework = λf. … in
handle
 framework(λx.plugin x; raise Logging(…))
with Logging:
 λx,k. print(x); resume k

Background

Accidental Handling

application

framework

plugin

Stack

Black triangle denotes a handler

Red arrow denotes a raised effect

Code

#application
let plugin = λx. … in
let framework = λf. … in
handle
 framework(λx.plugin x; raise Logging(…))
with Logging:
 λx,k. print(x); resume k

Background

Accidental Handling

application

framework

plugin

Stack

Black triangle denotes a handler

Red arrow denotes a raised effect

Code

#application
let plugin = λx. … in
let framework = λf. … in
handle
 framework(λx.plugin x; raise Logging(…))
with Logging:
 λx,k. print(x); resume k

Background

Accidental Handling

application

framework

plugin

Stack

Code

Now, you choose a different framework that
install a Logging handler for its own purpose.

#application
let plugin = λx. … in
let framework = λf. … in
handle
 framework(λx.plugin x; raise Logging(…))
with Logging:
 λx,k. print(x); resume k

Background

Accidental Handling

application

framework

plugin

Stack

Code

Now, you choose a different framework that
install a Logging handler for its own purpose.

#application
let plugin = λx. … in
let framework = λf. handle … with Logging: … in
handle
 framework(λx.plugin x; raise Logging(…))
with Logging:
 λx,k. print(x); resume k

Background

Accidental Handling

application

framework

plugin

Stack

Code

Now, you choose a different framework that
install a Logging handler for its own purpose.

#application
let plugin = λx. … in
let framework = λf. handle … with Logging: … in
handle
 framework(λx.plugin x; raise Logging(…))
with Logging:
 λx,k. print(x); resume k

Background

Accidental Handling

application

framework2

plugin

Stack

Code

Now, you choose a different framework that
install a Logging handler for its own purpose.

#application
let plugin = λx. … in
let framework2 = λf. handle … with Logging: … in
handle
 framework2(λx.plugin x; raise Logging(…))
with Logging:
 λx,k. print(x); resume k

Background

Accidental Handling

application

framework2

plugin

Stack

Code

Now, you choose a different framework that
install a Logging handler for its own purpose.
When an effect is raised, it will be
accidentally handled by the handler in
framework2.

#application
let plugin = λx. … in
let framework2 = λf. handle … with Logging: … in
handle
 framework2(λx.plugin x; raise Logging(…))
with Logging:
 λx,k. print(x); resume k

Background

Accidental Handling

application

framework2

plugin

Stack

Code

Now, you choose a different framework that
install a Logging handler for its own purpose.
When an effect is raised, it will be
accidentally handled by the handler in
framework2.

#application
let plugin = λx. … in
let framework2 = λf. handle … with Logging: … in
handle
 framework2(λx.plugin x; raise Logging(…))
with Logging:
 λx,k. print(x); resume k

Background

Accidental Handling

application

framework2

plugin

Stack

Code

Now, you choose a different framework that
install a Logging handler for its own purpose.
When an effect is raised, it will be
accidentally handled by the handler in
framework2.
This behavior breaks the abstraction and
makes it difficult to reason about the
programs.

#application
let plugin = λx. … in
let framework2 = λf. handle … with Logging: … in
handle
 framework2(λx.plugin x; raise Logging(…))
with Logging:
 λx,k. print(x); resume k

Background

Accidental Handling

application

framework2

plugin

Stack

Code

Now, you choose a different framework that
install a Logging handler for its own purpose.
When an effect is raised, it will be
accidentally handled by the handler in
framework2.
This behavior breaks the abstraction and
makes it difficult to reason about the
programs.

#application
let plugin = λx. … in
let framework2 = λf. handle … with Logging: … in
handle
 framework2(λx.plugin x; raise Logging(…))
with Logging:
 λx,k. print(x); resume k

Background

This is similar to the abstraction problem with
dynamically scoped variables.

Effect handler

Effect handlers subsume an array of control flow features: async/await,
coroutine, generator…

Dynamically scoped handler has a modularity problem, and lexically scoped
handler restores the modularity.

Background

Lexical effect handler 101
An example illustrating its operational semantics.

handle
 (raise ask()) + 1
with ask =
 λk. resume k 42

Background

Lexical effect handler 101

handle
 (raise #314()) + 1
with #314
 λk. resume k 42

Background

freshly
generated label

An example illustrating its operational semantics.

Lexical effect handler 101

handle
 (raise #314()) + 1
with #314
 λk. resume k 42

Background

An example illustrating its operational semantics.

Lexical effect handler 101

handle
 (raise #314()) + 1
with #314
 λk. resume k 42

Background

An example illustrating its operational semantics.

Lexical effect handler 101
Background

Programs built with lexical effect handlers enjoy modularity.

Yizhou Zhang and Andrew C. Myers. Abstraction-safe effect handlers via tunneling. Proc. of the ACM on
Programming Languages (PACMPL), 3(POPL), January 2019

Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. Binders by day, labels by night: effect
instances via lexically scoped handlers. Proc. of the ACM on Programming Languages (PACMPL), 4(POPL),
January 2020

Lexical effect handler
However, existing implementations impose a runtime cost

def f(n, exception_handler) =
 ""...
 if (bad)
 raise exception_handler(…);
 ""...

All effectful functions need to explicitly
receive handler labels as arguments.

This imposes a runtime cost even for
rarely raised effects.

Background

Lexical effect handler
However, existing implementations impose a runtime cost

def f(n, exception_handler) =
 ""...
 if (bad)
 raise exception_handler(…);
 ""...

All effectful functions need to explicitly
receive handler labels as arguments.

This imposes a runtime cost even for
rarely raised effects.

Background

Zero-Cost Lexical Effect Handlers

In this work, we present a type-directed compilation that eliminates the runtime
cost for having handlers in the lexical context. This compilation design obeys
zero-cost principle.

#main
let f = λ(x, h1, h2).

raise h1(x); raise h2(x)
let g = λ(x, h).
 handle
 f(x, h, log)
 with log = ""...
in
handle
 g(42, log)
with log = ""...

Zero-Cost Lexical Effect Handlers, Example 1

We will first see an execution with
the lexical effect handler semantics.

We will then figure out how to make
the semantics zero-cost!

#main
let f = λ(x, h1, h2).

raise h1(x); raise h2(x)
let g = λ(x, h).
 handle
 f(x, h, log)
 with log = ""...
in
handle
 g(42, log)
with log = ""...

main

Zero-Cost Lexical Effect Handlers, Example 1

#main
let f = λ(x, h1, h2).

raise h1(x); raise h2(x)
let g = λ(x, h).
 handle
 f(x, h, log)
 with log = ""...
in
handle
 g(42, log)
with log = ""...

main

Zero-Cost Lexical Effect Handlers, Example 1

#main
let f = λ(x, h1, h2).

raise h1(x); raise h2(x)
let g = λ(x, h).
 handle
 f(x, h, log)
 with log = ""...
in
handle
 g(42, log)
with log = ""...

main
0x5

Zero-Cost Lexical Effect Handlers, Example 1

#main
let f = λ(x, h1, h2).

raise h1(x); raise h2(x)
let g = λ(x, h).
 handle
 f(x, h, log)
 with log = ""...
in
handle
 g(42, log)
with log = ""...

main
0x5

Zero-Cost Lexical Effect Handlers, Example 1

#main
let f = λ(x, h1, h2).

raise h1(x); raise h2(x)
let g = λ(x, h).
 handle
 f(x, h, log)
 with log = ""...
in
handle
 g(42, log)
with log = ""...

main
0x5

g
h

Zero-Cost Lexical Effect Handlers, Example 1

#main
let f = λ(x, h1, h2).

raise h1(x); raise h2(x)
let g = λ(x, h).
 handle
 f(x, h, log)
 with log = ""...
in
handle
 g(42, log)
with log = ""...

main
0x5

g
h

Zero-Cost Lexical Effect Handlers, Example 1

handler
parameter

binding

#main
let f = λ(x, h1, h2).

raise h1(x); raise h2(x)
let g = λ(x, h).
 handle
 f(x, h, log)
 with log = ""...
in
handle
 g(42, log)
with log = ""...

main
0x5

g
h

Zero-Cost Lexical Effect Handlers, Example 1

#main
let f = λ(x, h1, h2).

raise h1(x); raise h2(x)
let g = λ(x, h).
 handle
 f(x, h, log)
 with log = ""...
in
handle
 g(42, log)
with log = ""...

main
0x5

g
h

0x6

Zero-Cost Lexical Effect Handlers, Example 1

#main
let f = λ(x, h1, h2).

raise h1(x); raise h2(x)
let g = λ(x, h).
 handle
 f(x, h, log)
 with log = ""...
in
handle
 g(42, log)
with log = ""...

main
0x5

g
h

0x6

Zero-Cost Lexical Effect Handlers, Example 1

#main
let f = λ(x, h1, h2).

raise h1(x); raise h2(x)
let g = λ(x, h).
 handle
 f(x, h, log)
 with log = ""...
in
handle
 g(42, log)
with log = ""...

main
0x5

g
h

0x6

f
h1 h2

Zero-Cost Lexical Effect Handlers, Example 1

#main
let f = λ(x, h1, h2).

raise h1(x); raise h2(x)
let g = λ(x, h).
 handle
 f(x, h, log)
 with log = ""...
in
handle
 g(42, log)
with log = ""...

main
0x5

g
h

0x6

f
h1 h2

Zero-Cost Lexical Effect Handlers, Example 1

#main
let f = λ(x, h1, h2).

raise h1(x); raise h2(x)
let g = λ(x, h).
 handle
 f(x, h, log)
 with log = ""...
in
handle
 g(42, log)
with log = ""...

main
0x5

g
h

0x6

f
h1 h2

raise 0x5(42)

Zero-Cost Lexical Effect Handlers, Example 1

#main
let f = λ(x, h1, h2).

raise h1(x); raise h2(x)
let g = λ(x, h).
 handle
 f(x, h, log)
 with log = ""...
in
handle
 g(42, log)
with log = ""...

main
0x5

g
h

0x6

f
h1 h2

raise 0x5(42)

Zero-Cost Lexical Effect Handlers, Example 1

#main
let f = λ(x, h1, h2).

raise h1(x); raise h2(x)
let g = λ(x, h).
 handle
 f(x, h, log)
 with log = ""...
in
handle
 g(42, log)
with log = ""...

main
0x5

g
h

0x6

f
h1 h2

raise 0x6(42)

Zero-Cost Lexical Effect Handlers, Example 1

#main
let f = λ(x, h1, h2).

raise h1(x); raise h2(x)
let g = λ(x, h).
 handle
 f(x, h, log)
 with log = ""...
in
handle
 g(42, log)
with log = ""...

main
0x5

g
h

0x6

f
h1 h2

raise 0x6(42)

Zero-Cost Lexical Effect Handlers, Example 1

#main
let f = λ(x, h1, h2).

raise h1(x); raise h2(x)
let g = λ(x, h).
 handle
 f(x, h, log)
 with log = ""...
in
handle
 g(42, log)
with log = ""...

main
0x5

g
h

0x6

f
h1 h2

raise 0x6(42)
Can we locate the intended handler without
passing down labels?

Zero-Cost Lexical Effect Handlers, Example 1

#main
let f = λ(x, h1, h2).

raise h1(x); raise h2(x)
let g = λ(x, h).
 handle
 f(x, h, log)
 with log = ""...
in
handle
 g(42, log)
with log = ""...

main

g
h

f
h1 h2

raise h2(42)
Can we locate the intended handler without
passing down labels?

Zero-Cost Lexical Effect Handlers, Example 1

#main
let f = λ(x, h1, h2).

raise h1(x); raise h2(x)
let g = λ(x, h).
 handle
 f(x, h, log)
 with log = ""...
in
handle
 g(42, log)
with log = ""...

main

g
h

f
h1 h2

raise h2(42)
Can we locate the intended handler without
passing down labels?

Yes, just reverse the arrows!

Zero-Cost Lexical Effect Handlers, Example 1

#main
let f = λ(x, h1, h2).

raise h1(x); raise h2(x)
let g = λ(x, h).
 handle
 f(x, h, log)
 with log = ""...
in
handle
 g(42, log)
with log = ""...

main

g
h

f
h1 h2

raise h2(42)
Can we locate the intended handler without
passing down labels?

Yes, just reverse the arrows!

Zero-Cost Lexical Effect Handlers, Example 1

#main
let f = λ(x, h1, h2).

raise h1(x); raise h2(x)
let g = λ(x, h).
 handle
 f(x, h, log)
 with log = ""...
in
handle
 g(42, log)
with log = ""...

main

g
h

f
h1 h2

raise h2(42)
Implementation-wise, a stackwalker walks
the stack. It carries the De Bruijn index of
the intended handler variable.

Zero-Cost Lexical Effect Handlers, Example 1

#main
let f = λ(x, h1, h2).

raise h1(x); raise h2(x)
let g = λ(x, h).
 handle
 f(x, h, log)
 with log = ""...
in
handle
 g(42, log)
with log = ""...

main

g
h

f
h1 h2

raise h2(42) <0>
Implementation-wise, a stackwalker walks
the stack. It carries the De Bruijn index of
the intended handler variable.

Zero-Cost Lexical Effect Handlers, Example 1

#main
let f = λ(x, h1, h2).

raise h1(x); raise h2(x)
let g = λ(x, h).
 handle
 f(x, h, log)
 with log = ""...
in
handle
 g(42, log)
with log = ""...

main

g
h

f
h1 h2

raise h2(42) <0>
Implementation-wise, a stackwalker walks
the stack. It carries the De Bruijn index of
the intended handler variable.

Zero-Cost Lexical Effect Handlers, Example 1

clue

#main
let f = λ(x, h1, h2).

raise h1(x); raise h2(x)
let g = λ(x, h).
 handle
 f(x, h, log)
 with log = ""...
in
handle
 g(42, log)
with log = ""...

main

g
h

f
h1 h2

raise h2(42)

<0> "-> <0>

Implementation-wise, a stackwalker walks
the stack. It carries the De Bruijn index of
the intended handler variable.

Zero-Cost Lexical Effect Handlers, Example 1

#main
let f = λ(x, h1, h2).

raise h1(x); raise h2(x)
let g = λ(x, h).
 handle
 f(x, h, log)
 with log = ""...
in
handle
 g(42, log)
with log = ""...

main

g
h

f
h1 h2

raise h2(42)

<0>

Implementation-wise, a stackwalker walks
the stack. It carries the De Bruijn index of
the intended handler variable.

Zero-Cost Lexical Effect Handlers, Example 1

#main
let f = λ(x, h1, h2).

raise h1(x); raise h2(x)
let g = λ(x, h).
 handle
 f(x, h, log)
 with log = ""...
in
handle
 g(42, log)
with log = ""...

main

g
h

f
h1 h2

raise h2(42)

<0>

Implementation-wise, a stackwalker walks
the stack. It carries the De Bruijn index of
the intended handler variable.

Zero-Cost Lexical Effect Handlers, Example 1

#main
let f = λ(x, h1, h2).

raise h1(x); raise h2(x)
let g = λ(x, h).
 handle
 f(x, h, log)
 with log = ""...
in
handle
 g(42, log)
with log = ""...

main

g
h

f
h1 h2

raise h2(42)

<0>

Implementation-wise, a stackwalker walks
the stack. It carries the De Bruijn index of
the intended handler variable.

Zero-Cost Lexical Effect Handlers, Example 1

main

g
h

f
h1 h2

raise h2(42)

<0>

This semantics finds the handler by walking
the stack, so its performance characteristics
is similar to dynamically scoped handlers.

Moreover, it walks the stack more “carefully”
and simulates the behavior of lexically
scoped handlers, so it enjoys modularity.

Zero-Cost Lexical Effect Handlers, Example 1

Zero-Cost Lexical Effect Handlers, Example 2

Our compilation can also deal with higher-order functions.

#main
let
 g = Λα.λ(x, f: [α]N"->N).f(x)
in
handle
 handle
 let
 f = λ(x).raise log(x); raise exc()
 in
 g[log, exc](42, f)
 with log: Logging = …
with exc: Exception = ""...

Zero-Cost Lexical Effect Handlers, Example 2

main

#main
let
 g = Λα.λ(x, f: [α]N"->N).f(x)
in
handle
 handle
 let
 f = λ(x).raise log(x); raise exc()
 in
 g[log, exc](42, f)
 with log: Logging = …
with exc: Exception = ""...

Zero-Cost Lexical Effect Handlers, Example 2

main

#main
let
 g = Λα.λ(x, f: [α]N"->N).f(x)
in
handle
 handle
 let
 f = λ(x).raise log(x); raise exc()
 in
 g[log, exc](42, f)
 with log: Logging = …
with exc: Exception = ""...

Zero-Cost Lexical Effect Handlers, Example 2

main

#main
let
 g = Λα.λ(x, f: [α]N"->N).f(x)
in
handle
 handle
 let
 f = λ(x).raise log(x); raise exc()
 in
 g[log, exc](42, f)
 with log: Logging = …
with exc: Exception = ""...

Zero-Cost Lexical Effect Handlers, Example 2

main

#main
let
 g = Λα.λ(x, f: [α]N"->N).f(x)
in
handle
 handle
 let
 f = λ(x).raise log(x); raise exc()
 in
 g[log, exc](42, f)
 with log: Logging = …
with exc: Exception = ""...

Zero-Cost Lexical Effect Handlers, Example 2

main

#main
let
 g = Λα.λ(x, f: [α]N"->N).f(x)
in
handle
 handle
 let
 f = λ(x).raise log(x); raise exc()
 in
 g[log, exc](42, f)
 with log: Logging = …
with exc: Exception = ""...

Zero-Cost Lexical Effect Handlers, Example 2

main

#main
let
 g = Λα.λ(x, f: [α]N"->N).f(x)
in
handle
 handle
 let
 f = λ(x).raise log(x); raise exc()
 in
 g[log, exc](42, f)
 with log: Logging = …
with exc: Exception = ""...

Zero-Cost Lexical Effect Handlers, Example 2

main

#main
let
 g = Λα.λ(x, f: [α]N"->N).f(x)
in
handle
 handle
 let
 f = λ(x).raise log(x); raise exc()
 in
 g[log, exc](42, f)
 with log: Logging = …
with exc: Exception = ""...

Zero-Cost Lexical Effect Handlers, Example 2

main

Zero-Cost Lexical Effect Handlers, Example 2
#main
let
 g = Λα.λ(x, f: [α]N"->N).f(x)
in
handle
 handle
 let
 f = λ(x).raise log(x); raise exc()
 in
 g[log, exc](42, f)
 with log: Logging = …
with exc: Exception = ""...

main

g
α

#main
let
 g = Λα.λ(x, f: [α]N"->N).f(x)
in
handle
 handle
 let
 f = λ(x).raise log(x); raise exc()
 in
 g[log, exc](42, f)
 with log: Logging = …
with exc: Exception = ""...

Zero-Cost Lexical Effect Handlers, Example 2

main

g
α

#main
let
 g = Λα.λ(x, f: [α]N"->N).f(x)
in
handle
 handle
 let
 f = λ(x).raise log(x); raise exc()
 in
 g[log, exc](42, f)
 with log: Logging = …
with exc: Exception = ""...

main

g
α

f

Zero-Cost Lexical Effect Handlers, Example 2

α

#main
let
 g = Λα.λ(x, f: [α]N"->N).f(x)
in
handle
 handle
 let
 f = λ(x).raise log(x); raise exc()
 in
 g[log, exc](42, f)
 with log: Logging = …
with exc: Exception = ""...

Zero-Cost Lexical Effect Handlers, Example 2

main

g
α

f

α

capture-set of f，
known at the callsite

#main
let
 g = Λα.λ(x, f: [α]N"->N).f(x)
in
handle
 handle
 let
 f = λ(x).raise log(x); raise exc()
 in
 g[log, exc](42, f)
 with log: Logging = …
with exc: Exception = ""...

Zero-Cost Lexical Effect Handlers, Example 2

main

g
α

f

α

#main
let
 g = Λα.λ(x, f: [α]N"->N).f(x)
in
handle
 handle
 let
 f = λ(x).raise log(x); raise exc()
 in
 g[log, exc](42, f)
 with log: Logging = …
with exc: Exception = ""...

Zero-Cost Lexical Effect Handlers, Example 2

main

g
α

f

α

<∞>

#main
let
 g = Λα.λ(x, f: [α]N"->N).f(x)
in
handle
 handle
 let
 f = λ(x).raise log(x); raise exc()
 in
 g[log, exc](42, f)
 with log: Logging = …
with exc: Exception = ""...

<∞, Logging>

Zero-Cost Lexical Effect Handlers, Example 2

main

g
α

f

α

ambiguity

#main
let
 g = Λα.λ(x, f: [α]N"->N).f(x)
in
handle
 handle
 let
 f = λ(x).raise log(x); raise exc()
 in
 g[log, exc](42, f)
 with log: Logging = …
with exc: Exception = ""...

Zero-Cost Lexical Effect Handlers, Example 2

main

g
α

f

α <∞, Logging>

#main
let
 g = Λα.λ(x, f: [α]N"->N).f(x)
in
handle
 handle
 let
 f = λ(x).raise log(x); raise exc()
 in
 g[log, exc](42, f)
 with log: Logging = …
with exc: Exception = ""...

Zero-Cost Lexical Effect Handlers, Example 2

main

g
α

f

α <∞, Logging>

#main
let
 g = Λα.λ(x, f: [α]N"->N).f(x)
in
handle
 handle
 let
 f = λ(x).raise log(x); raise exc()
 in
 g[log, exc](42, f)
 with log: Logging = …
with exc: Exception = ""...

<∞, Logging>
"->
<0, Logging>

Zero-Cost Lexical Effect Handlers, Example 2

main

g
α

f

α

#main
let
 g = Λα.λ(x, f: [α]N"->N).f(x)
in
handle
 handle
 let
 f = λ(x).raise log(x); raise exc()
 in
 g[log, exc](42, f)
 with log: Logging = …
with exc: Exception = ""...

Zero-Cost Lexical Effect Handlers, Example 2

main

g
α

f

α <0, Logging>

Zero-Cost Lexical Effect Handlers, Example 2
#main
let
 g = Λα.λ(x, f: [α]N"->N).f(x)
in
handle
 handle
 let
 f = λ(x).raise log(x); raise exc()
 in
 g[log, exc](42, f)
 with log: Logging = …
with exc: Exception = ""...

main

g
α

f

α

<0, Logging>

Zero-Cost Lexical Effect Handlers, Example 2
#main
let
 g = Λα.λ(x, f: [α]N"->N).f(x)
in
handle
 handle
 let
 f = λ(x).raise log(x); raise exc()
 in
 g[log, exc](42, f)
 with log: Logging = …
with exc: Exception = ""...

main

g
α

f

α

<0, Logging>

#main
let
 g = Λα.λ(x, f: [α]N"->N).f(x)
in
handle
 handle
 let
 f = λ(x).raise log(x); raise exc()
 in
 g[log, exc](42, f)
 with log: Logging = …
with exc: Exception = ""...

Zero-Cost Lexical Effect Handlers, Example 2

main

g
α

f

α

<0, Logging>

#main
let
 g = Λα.λ(x, f: [α]N"->N).f(x)
in
handle
 handle
 let
 f = λ(x).raise log(x); raise exc()
 in
 g[log, exc](42, f)
 with log: Logging = …
with exc: Exception = ""...

Zero-Cost Lexical Effect Handlers, Example 2

main

g
α

f

α

<0, Logging>

#main
let
 g = Λα.λ(x, f: [α]N"->N).f(x)
in
handle
 handle
 let
 f = λ(x).raise log(x); raise exc()
 in
 g[log, exc](42, f)
 with log: Logging = …
with exc: Exception = ""...

<0, Logging>
"->
<0, Logging>

Zero-Cost Lexical Effect Handlers, Example 2

main

g
α

f

α

#main
let
 g = Λα.λ(x, f: [α]N"->N).f(x)
in
handle
 handle
 let
 f = λ(x).raise log(x); raise exc()
 in
 g[log, exc](42, f)
 with log: Logging = …
with exc: Exception = ""...

Zero-Cost Lexical Effect Handlers, Example 2

main

g
α

f

α

<0, Logging>

<0, Logging>

Zero-Cost Lexical Effect Handlers, Example 2
#main
let
 g = Λα.λ(x, f: [α]N"->N).f(x)
in
handle
 handle
 let
 f = λ(x).raise log(x); raise exc()
 in
 g[log, exc](42, f)
 with log: Logging = …
with exc: Exception = ""...

main

g
α

f

α

#main
let
 g = Λα.λ(x, f: [α]N"->N).f(x)
in
handle
 handle
 let
 f = λ(x).raise log(x); raise exc()
 in
 g[log, exc](42, f)
 with log: Logging = …
with exc: Exception = ""...

<0, Logging>

Zero-Cost Lexical Effect Handlers, Example 2

main

g
α

f

α

Implementation: Lexa
Source Language

handle
 g(log)
with log:Logging =
 ""...

Source Language Target Language

handle
 g(log)
with log:Logging =
 ""...

handle
 g()^{0"->0}
with Logging:
 ""...

callsite
metadata

Implementation: Lexa

Source Language Target Language Binary

handle
 g(log)
with log:Logging =
 ""...

handle
 g()^{0"->0}
with Logging:
 ""...

Code Segment:

0x122 ""...
0x123 call g
0x124 ""...

Data Segment:
0x83: {""...}
0x124:{0"->0}
0x143:{""...}

Implementation: Lexa

Source Language Target Language Binary

handle
 g(log)
with log:Logging =
 ""...

handle
 g()^{0"->0}
with Logging:
 ""...

Code Segment:

0x122 ""...
0x123 call g
0x124 ""...

Data Segment:
0x83: {""...}
0x124:{0"->0}
0x143:{""...}

Implementation: Lexa

Source Language Target Language Binary

handle
 g(log)
with log:Logging =
 ""...

handle
 g()^{0"->0}
with Logging:
 ""...

We formally defined the source and targe languages and
proved that the compilation is semantic-preserving.

Code Segment:

0x122 ""...
0x123 call g
0x124 ""...

Data Segment:
0x83: {""...}
0x124:{0"->0}
0x143:{""...}

Implementation: Lexa

Evaluation

Hypothesis: effect handlers that are rarely used benefit from zero-cost
implementation.

Evaluation
A program with two coorperativley scheduled co-routine.

A larger value on x-axis means less frequent yielding, so zero-cost strategy is
more efficient.

Lexical Effect Handler

Enjoys modularity, but
incurs overhead even on
infrequently-used effects.

Enjoys modularity, and
obey zero-cost principle.

this work

Lexical Effect Handler

Enjoys modularity, but
incurs overhead even on
infrequently-used effects.

Enjoys modularity, and
obey zero-cost principle.

this work

our hope

