
Lexical Effect Handlers: Fast by Design, Correct by
Proof
Cong Ma

University of Waterloo
Waterloo, Canada

cong.ma@uwaterloo.ca

Abstract
Lexical effect handlers offer both expressivity and strong
reasoning principles, yet their practical adoption has been
hindered by a lack of efficient implementations. As effect
handlers gain mainstream traction, it becomes urgent to
show that lexically scoped handlers can be made performant.
My doctoral research addresses this need through the design
and implementation of Lexa, a language and compiler that
achieves state-of-the-art performance with lexically scoped
handlers. Drawing on deep semantic insight, I have devel-
oped techniques that advance both implementation and the-
ory. Lexa outperforms existing compilers, and all techniques
are formally proved correct.

CCS Concepts: • Software and its engineering→ Com-
pilers;Control structures;Correctness; •Theory of com-
putation→ Type structures; Control primitives.

Keywords: lexical effect handlers, compiler correctness, Lexa.
ACM Reference Format:
Cong Ma. 2025. Lexical Effect Handlers: Fast by Design, Correct
by Proof. In Companion Proceedings of the 2025 ACM SIGPLAN In-
ternational Conference on Systems, Programming, Languages, and
Applications: Software for Humanity (SPLASH Companion ’25), Oc-
tober 12–18, 2025, Singapore, Singapore. ACM, New York, NY, USA,
3 pages. https://doi.org/10.1145/3758316.3762822

1 Motivation
Language design mistakes leave lasting scars—costing bil-
lions and shaping generations of software. Today, we stand
at the brink of another such mistake. As a language and
compiler designer, I see it as my responsibility to intervene
before it becomes reality. This paper recounts my efforts to
push past perceived limits and avoid repeating the errors of
the past.

Effect handlers are a powerful language feature that enable
expressive control flows, and mainstream language are rac-
ing to adopt them [7, 9]. They allow programmers to define

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
SPLASH Companion ’25, Singapore, Singapore
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2141-0/25/10
https://doi.org/10.1145/3758316.3762822

custom control flow constructs, such as exceptions, async-
await, and coroutines, in a modular way. Operationally, they
resemble resumable exceptions: the handler captures the con-
tinuation from the point of the effect to the handler, allowing
the program to resume it later.

However, recent research has revealed a modularity issue
[11] with dynamically scoped effect handlers. The problem
emerges in higher-order functions, where effects raised by
function arguments may be accidentally handled by handlers
installed in the enclosing higher-order function. The code
below illustrates this issue: an application imports plugin
and framework, and defines a wrapper plugin' that raises
a Logging effect and intends to handle it inside the appli-
cation. Now, if framework happens to install a Logging
handler before calling the plugin, that handler will inter-
cept the effect. This behavior may surprise the application
developer and has been shown to violate the parametricity
expected from higher-order functions. This is similar to the
problemwith dynamically scoped variables, where a variable
defined in a higher-order function can be accessed by the
function argument, leading to unintended consequences.

import plugin, framework

let plugin' = λx.plugin x; raise Logging(...)

handle

framework(plugin')

with Logging = λx,k. print(x); resume k

In response to this issue, lexically scoped handlers [3, 11]
have been proposed as a promising alternative. In this design,
handlers are lexically scoped, and every effectful function is
explicitly parameterized by a handler label. When a handler is
installed, it generates a fresh label that is passed down to the
effectful functions. The function can then raise effects that
are routed to the appropriate handler via this label. Applied
to the example, the plugin' is modified to explicitly accept
a handler parameter. It is curried with the label associated
with the Logging handler before being passed to the frame-
work. This guarantees that the effect raised by the plugin is
handled by the application’s Logging handler, rather than
the framework’s. It has been shown [2, 11] that this lexical
scoping semantics restores strong reasoning principles while
preserving the expressiveness of effect handlers.
Although lexically scoped handlers are attractive in the-

ory, they have not been proved to be practical. Inefficiencies
in the existing implementation of lexically scoped handlers

https://orcid.org/0009-0005-0842-4697
https://doi.org/10.1145/3758316.3762822
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3758316.3762822


SPLASH Companion ’25, October 12–18, 2025, Singapore, Singapore Cong Ma

have hindered their adoption in practice, despite their theo-
retical advantages. It would be a shame if language design-
ers in the coming decade defaulted to dynamically scoped
handlers solely for efficiency. It would be a shame if the
language design community were on the verge of repeating
the same misstep made with dynamically scoped variables.
My doctoral research aims to influence this trajectory by
demonstrating that lexically scoped handlers can, in fact,
be implemented efficiently. Strong reasoning principles and
high performance need not be at odds—effect handlers can
achieve both.

2 Problem
Crafting a good compiler is the art of bridging two seemingly
disparate worlds: the mathematical realm of the functional
language and the physical reality of machine code. Existing
compilers for effect handlers, daunted by their complex se-
mantics, often take a shortcut by translating to a simpler
functional language—typically using CPS [8] transforma-
tions—and then relying on an “oracle compiler” to generate
machine code. This approach leaves a wide semantic gap be-
tween source and target, often resulting in inefficient code.

My research develops the Lexa compiler, which compiles
the source language all the way to assembly, exploiting the
semantic features of both source and target languages to
improve efficiency. Despite the complexity of both source and
target languages and the compilation itself, all compilation
techniques are formally proved correct, with ongoing work
to integrate them into certified compilers like CompCert.

3 Lexa Language and Compiler
My research produces the Lexa language and compiler [5, 6].
In this section, I will present the key techniques that enable
Lexa to achieve state-of-the-art performance and expand
the design space for effect handler implementations.

In Direct Lexa [6], I compile labels to memory addresses
and leverage the efficiency of random memory access to
reduce the cost of effect raising from 𝑂(𝑛) to 𝑂(1). In Zero
Lexa [5], I exploit the second-class nature of labels to achieve
a novel zero-overhead implementation. The former improves
the performance of effects that are raised frequently, while
the latter works well for infrequent effects. The Lexa lan-
guage allows programmers to choose the appropriate com-
pilation strategy for each individual effect, enabling fine-
grained tuning within the same program.

3.1 Direct Lexa
The semantics of lexically scoped handlers poses both chal-
lenges and opportunities for compilation. Unlike dynamically
scoped handlers, the raise site of a lexical handler is given
a label which directly refers to the handler. Our compiler
exploits this convenience and compiles the labels to stack
addresses where the handler is installed. When an effect is

H

0x32

r ai se 0x32

H

0x32

H

sp sp

r esume 0x32

r ai se

r esume

exchanger exchanger

Figure 1. Stack switching in Lexa.
raised to a label, the control directly goes to the stack address
specified by the label, eliminating the need for traversing
the call stack to find the handler.

A key feature of effect handlers is their ability to reify and
resume continuations as first-class values. It is important
that Lexa supports this expressive feature without compro-
mising performance. Lexa implements this via stack switch-
ing, which splits the runtime stack into segments, forming
a chain of stacks. When an effect is raised, the stacks are
cut at the place where the handler is installed. This is shown
in Figure 1, where H represents the frame of a handler at
address 0x32. The stack switching is carried out by simply
swapping a special pointer, which we call exchanger, that
was pointing to the previous stack with the current stack
pointer sp. This simultaneously cuts the stack and reifies the
continuation, which is now represented by the same address
0x32. To resume the continuation, another swap between
the exchanger and sp restores the captured stack segments,
allowing execution to continue from where it left off.

3.2 Zero Lexa
Widespread adoption of lexically scoped handlers would not
be possible if this semantics altered the performance profile
of existing code. Languages with exception handlers like C++
uphold the zero-overhead principle, which states “what you
don’t use, you don’t pay for” [10]. Existing implementations
for lexical handlers have so far failed to achieve this principle,
as they all need to pass around the representation of the
handler labels: [8] passes subregion evidences, and Direct
Lexa passes memory addresses. These extra parameters add
overhead, potentially slowing down existing programs.

Zero Lexa brings forth a breakthrough in this problem by
introducing a type-directed compilation strategy that allows
lexically scoped handlers to have the performance character-
istics of their dynamically scoped counterparts, adhering to
the zero-overhead principle. The core idea is as follows. Dur-
ing compilation, the compiler extracts handler provenance
from the program’s type structure and emits it as a static
lookup table, which we call hopper. At run time, no handler
labels are passed as parameters. Instead, when an effect is
raised, a stackwalker traverses the call stack and consults the
hopper at each frame to reconstruct the lexical scoping struc-
ture of the original source code. This enables the stackwalker
to reconstruct the path the handler label would have taken



Lexical Effect Handlers: Fast by Design, Correct by Proof SPLASH Companion ’25, October 12–18, 2025, Singapore, Singapore

let fun0(ℓ2) = raise ℓ2
let fun1(ℓ0, ℓ1) = fun0(ℓ0)

?1

?2

?0

raise ?2

?0

fun1's 

frame

fun0's 

frame

hopper

Figure 2. Zero Lexa stack and hopper.

had it been explicitly passed as a parameter. Because no han-
dler label is threaded through the runtime, the mainline code
remains untouched by the presence of handlers.
As an example, consider the code at the top of Figure 2.

fun0 takes a handler label ℓ2 and raises to it, while fun1
takes two labels, ℓ0 and ℓ1, and calls fun0 with ℓ0. The dia-
gram below shows the call stack: black boxes denote func-
tion binders, and gray boxes show parameter instantiations.
These together represent where the hopper conceptually re-
sides on the stack; in the actual implementation, the hopper
is a separate data structure indexed by return addresses. Note
that label variables in the diagram are for illustration only
and do not exist at run time.

When fun0 raises to ℓ2, the stackwalker begins by track-
ing ℓ2. It consults the hopper to find its provenance and
discovers that ℓ2 was instantiated with ℓ0 in fun1. The stack-
walker then shifts to tracking ℓ0 and continues upward, con-
sulting the hopper at each step. This process continues until
it reaches the frame where the label originated—i.e., where
the handler was installed.
In a more complex program where the effects are ab-

stracted over a higher-order function, it becomes less clear
how the stackwalker should behave. As it traverses the frame
of the higher-order function, the path to the handler is ob-
scured by the abstraction, making it difficult to reconstruct
the original lexical flow. To address this, the stackwalker
maintains a dynamic state called a clue, which helps dis-
ambiguate among multiple potential paths. With the static
hopper and dynamic clue, Zero Lexa faithfully simulates the
semantics of the language that uses labels. See [5] for details.

4 Evaluation
We evaluate the Lexa compiler along two dimensions: cor-
rectness and performance.

4.1 Correctness
The Lexa compiler, comprising both Direct Lexa and Zero
Lexa, is proved correct via a CompCert-style simulation
proof [4]. For Direct Lexa, the proof establishes that the

compiled assembly is semantically equivalent to the high-
level source language. For Zero Lexa, the proof guarantees
that the stackwalker accurately discovers the intended han-
dler, as dictated by the source program that uses labels.

4.2 Performance
To evaluate Lexa’s performance with effects that are raised
frequently, we use a community-maintained benchmark suite
[1] and compare against Effekt and Koka—both of which sup-
port lexically scoped handlers. The results show that Lexa
consistently outperforms both across most benchmarks.
For infrequent effects, we introduce a new benchmark

suite focused on exception-like patterns, where effects are
raised rarely. Lexa again outperforms other systems in han-
dling infrequent effects. We further compare Zero Lexa
against Direct Lexa and validate our hypothesis: the cost
of occasional stackwalking is outweighed by the benefit of
avoiding label-passing overhead in mainline code.

References
[1] Bench [n. d.]. Effect handlers benchmarks suite. https://github.com/

effect-handlers/effect-handlers-bench Accessed: 2025-03-01.
[2] Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski.

2018. Handle with Care: Relational Interpretation of Algebraic Effects
and Handlers. Proc. of the ACM on Programming Languages (PACMPL)
2, POPL (Jan. 2018). doi:10.1145/3158096

[3] Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski.
2020. Binders by day, labels by night: effect instances via lexi-
cally scoped handlers. Proc. of the ACM on Programming Languages
(PACMPL) 4, POPL (Jan. 2020). doi:10.1145/3371116

[4] Xavier Leroy. 2009. A Formally Verified Compiler Back-end. Journal
Automated Reasoning 43, 4 (Dec. 2009). doi:10.1007/s10817-009-9155-4

[5] Cong Ma, Zhaoyi Ge, Max Jung, and Yizhou Zhang. 2025. Zero-
Overhead Lexical Effect Handlers. Proc. of the ACM on Programming
Languages (PACMPL) 9, OOPSLA2 (Oct. 2025). doi:10.1145/3763177

[6] Cong Ma, Zhaoyi Ge, Edward Lee, and Yizhou Zhang. 2024. Lexical
Effect Handlers, Directly. Proc. of the ACM on Programming Languages
(PACMPL) 8, OOPSLA2 (2024). doi:10.1145/3689770

[7] Luna Phipps-Costin, Andreas Rossberg, Arjun Guha, Daan Leijen,
Daniel Hillerström, KC Sivaramakrishnan, Matija Pretnar, and Sam
Lindley. 2023. Continuing WebAssembly with Effect Handlers. Proc.
of the ACM on Programming Languages (PACMPL) 7, OOPSLA2 (Oct.
2023). doi:10.1145/3622814

[8] Philipp Schuster, Jonathan Immanuel Brachthäuser, MariusMüller, and
Klaus Ostermann. 2022. A Typed Continuation-Passing Translation
for Lexical Effect Handlers. In ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI). doi:10.1145/3519939.
3523710

[9] KC Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq
Jaffer, and Anil Madhavapeddy. 2021. Retrofitting effect handlers onto
OCaml. In ACM SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI). doi:10.1145/3453483.3454039

[10] Bjarne Stroustrup. 2012. Foundations of C++. In European Symp. on
Programming (ESOP). doi:10.1007/978-3-642-28869-2_1

[11] Yizhou Zhang and Andrew C. Myers. 2019. Abstraction-Safe Effect
Handlers via Tunneling. Proc. of the ACM on Programming Languages
(PACMPL) 3, POPL (Jan. 2019). doi:10.1145/3290318

Received 2025-07-31; accepted 2025-08-16

https://github.com/effect-handlers/effect-handlers-bench
https://github.com/effect-handlers/effect-handlers-bench
https://doi.org/10.1145/3158096
https://doi.org/10.1145/3371116
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1145/3763177
https://doi.org/10.1145/3689770
https://doi.org/10.1145/3622814
https://doi.org/10.1145/3519939.3523710
https://doi.org/10.1145/3519939.3523710
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.1007/978-3-642-28869-2_1
https://doi.org/10.1145/3290318

	Abstract
	1 Motivation
	2 Problem
	3 Lexa Language and Compiler
	3.1 Direct Lexa
	3.2 Zero Lexa

	4 Evaluation
	4.1 Correctness
	4.2 Performance

	References

