
274

�antifying and Mitigating Cache Side Channel Leakage

with Di�erential Set

CONG MA∗, University of Waterloo, Canada

DINGHAO WU, Pennsylvania State University, USA

GANG TAN, Pennsylvania State University, USA

MAHMUT TAYLAN KANDEMIR, Pennsylvania State University, USA

DANFENG ZHANG, Duke University, Pennsylvania State University, USA

Cache side-channel attacks leverage secret-dependent footprints in CPU cache to steal con�dential information,

such as encryption keys. Due to the lack of a proper abstraction for reasoning about cache side channels,

existing static program analysis tools that can quantify or mitigate cache side channels are built on very

di�erent kinds of abstractions. As a consequence, it is hard to bridge advances in quanti�cation and mitigation

research. Moreover, existing abstractions lead to imprecise results. In this paper, we present a novel abstraction,

called di�erential set, for analyzing cache side channels at compile time. A distinguishing feature of di�erential

sets is that it allows compositional and precise reasoning about cache side channels. Moreover, it is the �rst

abstraction that carries su�cient information for both side channel quanti�cation and mitigation. Based on

this new abstraction, we develop a static analysis tool DSA that automatically quanti�es and mitigates cache

side channel leakage at the same time. Experimental evaluation on a set of commonly used benchmarks shows

that DSA can produce more precise leakage bound as well as mitigated code with fewer memory footprints,

when compared with state-of-the-art tools that only quantify or mitigate cache side channel leakage.

CCS Concepts: • Security and privacy→ Side-channel analysis and countermeasures; • Software and

its engineering→ Compilers.

Additional Key Words and Phrases: di�erential set, side channels, information �ow

ACM Reference Format:

Cong Ma, Dinghao Wu, Gang Tan, Mahmut Taylan Kandemir, and Danfeng Zhang. 2023. Quantifying and

Mitigating Cache Side Channel Leakagewith Di�erential Set. Proc. ACMProgram. Lang. 7, OOPSLA2, Article 274

(October 2023), 29 pages. https://doi.org/10.1145/3622850

1 INTRODUCTION

Program execution leaves footprints in CPU cache. Such footprints, when they are dependent
on secret information, have long been leveraged in cache side-channel attacks to steal sensitive
data from the physical implementations of cryptographic systems. A variety of powerful cache
side-channel attacks have been demonstrated on ciphers such as RSA [Aciicmez and Seifert 2007;
Percival 2005; Yarom and Falkner 2014], AES [Gullasch et al. 2011; Osvik et al. 2006; Tromer et al.
2010], and ElGamal [Liu et al. 2015; Zhang et al. 2012]. Cache side-channel attacks pose a serious

∗The majority of this author’s work was completed while as a student at Pennsylvania State University and was �nished

while at University of Waterloo.

Authors’ addresses: Cong Ma, cong.ma@uwaterloo.ca, University of Waterloo, , Canada; Dinghao Wu, dinghao@psu.edu,

Pennsylvania State University, , USA; Gang Tan, gtan@psu.edu, Pennsylvania State University, , USA; Mahmut Taylan

Kandemir, mtk2@psu.edu, Pennsylvania State University, , USA; Danfeng Zhang, dz132@duke.edu, Duke University,

Pennsylvania State University, , USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and

the full citation on the �rst page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/10-ART274

https://doi.org/10.1145/3622850

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 274. Publication date: October 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/
HTTPS://ORCID.ORG/0000-0002-0741-5511
HTTPS://ORCID.ORG/0000-0001-6109-6091
HTTPS://ORCID.ORG/
HTTPS://ORCID.ORG/0000-0003-1942-6872
https://doi.org/10.1145/3622850
https://orcid.org/
https://orcid.org/0000-0002-0741-5511
https://orcid.org/0000-0001-6109-6091
https://orcid.org/
https://orcid.org/
https://orcid.org/0000-0003-1942-6872
https://doi.org/10.1145/3622850

274:2 Cong Ma, Dinghao Wu, Gang Tan, Mahmut Taylan Kandemir, and Danfeng Zhang

threat to the security of many application domains, especially cloud computing. For example,
researchers have con�rmed that a remote attacker who only shares hardware resources with the
con�dential computation can quickly reveal private information [Brasser et al. 2017; Götzfried et al.
2017; Liu et al. 2015; Osvik et al. 2006; Percival 2005; Ristenpart et al. 2009; Schwarz et al. 2017;
Van Bulck et al. 2017; Xiao et al. 2017; Zhang et al. 2012].

Since cache side-channels originate from secret-dependent memory footprints and cache e�ects,
it is very challenging for programmers to identify such vulnerabilities in the source code. One well-
known abstraction used in the development of cryptographic libraries, a common target of cache
side-channel attacks, is called constant-time programming paradigm [Almeida et al. 2016]. Essentially,
the constant-time programming paradigm prohibits both control-�ow paths and memory-access
patterns from depending on program secrets. This principle is used to implement almost all modern
cryptography as (1) it protects software against timing side-channel attacks where an attacker can
precisely measure the victim program’s execution time, and (2) it is a simple abstraction whose
violation can be detected via static program analysis, such as a static taint analysis. Various static
analyses have been developed to detect violation of constant-time programming paradigm [Almeida
et al. 2016; Cauligi et al. 2020; Daniel et al. 2020] and further, to mitigate detected violations via
automatic code transformation [Borrello et al. 2021; Cauligi et al. 2019; Wu et al. 2012].
However, using sensitive control-�ow paths and memory-access patterns as an abstraction to

detecting and mitigating cache side channels has two limitations. First, while suitable for high
assurance systems, ruling out all sensitive control-�ow paths and memory-access patterns is
either infeasible or has high overhead [Coppens et al. 2009], making it less appealing for other
applications such as web application �rewalls [Schmitt and Schinzel 2012] and web browsers [Felten
and Schneider 2000; Jia et al. 2015; Kotcher et al. 2013; Stone 2013; Van Goethem et al. 2015]. Hence,
it is appealing to quantify the information leakage of each program location and mitigate the most
crucial ones. Unfortunately, the constant-time programming paradigm o�ers little information
on how to quantify information leakage, a reason that quanti�cation tools [Antonopoulos et al.
2017; Chen et al. 2017; Doychev et al. 2013; Doychev and Köpf 2017; Pasareanu et al. 2016; Phan
et al. 2017] are all built on very di�erent abstractions1 of side channels. Second, the identi�ed
sensitive control-�ow paths and memory-access patterns allow only imprecise mitigation. Consider
an array access A[k mod 2] where k is con�dential. Mitigation tools built on the constant-time
programming paradigm lack information on what might be leaked, which is the parity of k in this
example. Hence, they need to insert extra accesses to the whole array A to hide the sensitive access
conservatively, while a more e�cient mitigation only needs to access two elements A[0] and A[1].
In this paper, we present a novel abstraction called di�erential set to reason about cache side

channels at compile time. To the best of our knowledge, di�erential set is the �rst language-level
abstraction that enables both automated quanti�cation and mitigation of cache side channels. It
is computed from local di�erential set for each memory access of a program. Intuitively, local
di�erential set is a set of addresses that might be touched by either the memory access itself or its
corresponding “sibling” memory accesses in other control �ows (when there is a sensitive branch).
As opposed to dynamic memory accesses, di�erential sets are de�ned as a compile-time concept that
only depends on code structure. Hence, it allows static and compositional reasoning about cache
side channels. Moreover, we show that the di�erential set of a program, a combination of its local
di�erential sets, soundly approximates cache side channels in a program and furthermore, it enables
precise quanti�cation and mitigation of them. For example, an array access A[k mod 2], where k is
con�dential, has a di�erential set of � = {A[0], A[1]} if the access is not under sensitive branches.

1However, those abstractions fail to localize side channel leakage and thus cannot o�er su�cient information to aid

mitigation.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 274. Publication date: October 2023.

�antifying and Mitigating Cache Side Channel Leakage with Di�erential Set 274:3

Based on the result, it is straightforward to quantify its side channel leakage as log2 |� | = 1 bit,
and further, mitigate the side channel precisely via always accessing both A[0] and A[1] in the
transformed code where side channels are removed.

Further, we develop a static analysis tool DSA (Di�erential Set Analyzer) to automatically compute
di�erential sets and utilize the information to automatically quantify and mitigate cache side
channels. The core of DSA is a symbolic representation of di�erential sets as well as a novel
alignment algorithm that leads to more e�cient mitigation. In order to show the precision of
leakage bound as well as the e�ciency of mitigated programs produced by DSA, we evaluate DSA
on a set of benchmarks used in prior work [Antonopoulos et al. 2017; Borrello et al. 2021; Doychev
and Köpf 2017]. Compared with state-of-the-art tools that can only quantify [Doychev and Köpf
2017] or mitigate [Borrello et al. 2021] cache side-channel leakage, DSA provides the same or tighter
leakage bounds in all cases and its mitigated code contain fewer memory accesses. Although DSA’s
static analysis is usually slower than existing tools, it analyzes all benchmark programs under 20
minutes, and the cost is only paid (for better precision) at compile time.
To summarize, the contributions of this work include:

• Di�erential set, a novel language-level abstraction for reasoning about cache side channels
in a compositional and precise fashion (Section 4).
• DSA, the �rst static program analysis tool that can both automatically quantify and mitigate
cache side channels in a program (Section 5).
• Evaluation on common benchmark programs for quanti�cation and mitigation of side chan-
nels. In addition to being able to both quantify and mitigate side channels, DSA is able to
produce the same or tighter leakage bounds in all cases and its mitigated code contains fewer
memory accesses when compared with state-of-the-art tools (Section 6).

2 BACKGROUND AND THREAT MODEL

2.1 Cache Side Channel

Side channels are information channels that were not intended to convey information. In this paper,
we consider cache side channels where a program reveals secret information via its CPU cache
usage. We use the following code snippet to illustrate two kinds of cache side channels: sensitive
control-�ow paths and sensitive memory-access patterns. In this example, we assume that both s1

and s2 are secret inputs, A is an array storing public data, and cache line size is 64 bytes.2

1 char A[128];

2 if (s1==0)

3 x = A[0];

4 else

5 x = A[64];

6 x = A[s2];

Sensitive control-�ow path. A sensitive control-�ow path occurs when a branch condition’s value
depends on secrets, such as the branch at line 2 above. In this case, given two di�erent secret values
of s1, the program above stores data into two di�erent cache lines corresponding to A[0] and A[64]
respectively. When the branches contain longer code fragments, a sensitive branch might also
store instructions into two di�erent cache lines in the instruction cache. Although a cache-based
attacker that shares CPU cache with the victim program is unable to observe the cache line being

2Although we use this contrived example for its simplicity, we emphasize that the secret-dependent branch at line 1 mimics

real side channels in the modular exponentiation computation in RSA and ElGamal [Liu et al. 2015; Zhang et al. 2012].

Moreover, the secret-dependent array access at line 5 mimics real side channels in the block ciphers such as AES [Gullasch

et al. 2011; Osvik et al. 2006; Tromer et al. 2010].

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 274. Publication date: October 2023.

274:4 Cong Ma, Dinghao Wu, Gang Tan, Mahmut Taylan Kandemir, and Danfeng Zhang

accessed directly, the attacker can learn the value of s1 through techniques such as prime and

probe [Bonneau and Mironov 2006; Liu et al. 2015; Osvik et al. 2006; Tromer et al. 2010; Zhang
et al. 2012]: the attacker �rst primes cache sets being monitored (e.g., the two cache lines above) by
�lling the shared cache sets with his data and then probes the data again after the victim program
runs. A cache line that belongs to the same cache set that is accessed by the victim introduces a
longer latency in the probing step as the victim program evicts attacker’s data in the cache.

Sensitive data-access pattern. A sensitive data access occurs when a program accesses a memory
address that depends on secrets, such as line 6 in the code snippet above. As the value of s2 decides
which cache line is being accessed at line 6, a cache-based attacker (e.g., one who uses the prime
and probe technique discussed above) can also reveal some information about the value of s2 via
revealing which cache line is being accessed by the program.

2.2 Threat Model

We assume a cache-based adversary who has no direct access to the victim program but is co-located
on the same physical machine, and hence, share CPU cache (e.g., the second-level cache in some
architectures and third-level cache in almost all architectures) with the victim. To make the threat
model architecture-agnostic, we further assume a trace-based model [Doychev et al. 2013] where an
attacker learns the full trace of memory addresses (which includes data addresses, and instruction
addresses if instruction cache is a concern) being issued by the victim program. The threat model
re�ects powerful synchronous cache attacks [Gullasch et al. 2011; Liu et al. 2015; Yarom and Falkner
2014] where an attacker learns the shared cache state after each command in the victim program.
Since we focus on cache side channels, our threat model is a bit weaker than the threat model

behind the constant-time programming paradigm, which assumes the timing side channel. The
di�erence is that the latter also assumes that the adversary can directly control the victim program’s
execution and precisely measure its execution time. But, the cache-based model more precisely
re�ects more realistic cache attacks launched in cloud environments [Liu et al. 2015; Ristenpart
et al. 2009; Schwarz et al. 2017; Wu et al. 2012; Xiao et al. 2017; Xu et al. 2011; Zhang et al. 2012], an
emerging threat to cloud computing. Further, our threat model is also consistent with prior work
on cache side-channel analysis [Brotzman et al. 2019, 2021; Doychev et al. 2013; Doychev and Köpf
2017; Wang et al. 2019, 2017].
Finally, we note that our threat model is stronger than most program analysis that quanti�es

timing channel leakage (i.e., leakage via program execution time), as they [Antonopoulos et al.
2017; Chen et al. 2017; Pasareanu et al. 2016; Phan et al. 2017] do not model CPU cache. Instead,
they simply assume program execution time is described by the number of executed instructions.

3 OVERVIEW

We use the program in Figure 1 as a running example throughout this paper. This example demon-
strates common side-channel leakage that appear in real-world cases (as discussed in Section 2).
The program takes in a secret array in, a secret input threshold, and it copies elements of the
array in to an output array out in a loop. If element in[i] is smaller than the secret threshold, the
element is placed at the beginning of out; otherwise, it is placed at the end of out. Local variables
j0 and j1 represent, respectively, the current insertion point at the beginning and end of out.

Note that the program contains one sensitive control-�ow path at line 8 and two sensitive array
accesses (out[j0] and out[j1]) at lines 9 and 11. They both can leak information as demonstrated
by two sets of inputs and their corresponding access traces to array out:

threshold = 2, in = {0, 1, 2, 3} ↩→ out[0] ..out[1] ..out[3] ..out[2]

threshold = 3, in = {4, 3, 2, 1} ↩→ out[3] ..out[2] ..out[0] ..out[1]

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 274. Publication date: October 2023.

�antifying and Mitigating Cache Side Channel Leakage with Di�erential Set 274:5

1 #define SIZE 4 // SIZE is a constant

2 int main(int in[SIZE], int out[SIZE],

3 int threshold) {

4 j0 = 0;

5 j1 = SIZE -1;

6 #pragma unroll // loop is unrolled

7 for (i = 0; i < SIZE; i++) {

8 if (in[i] < threshold) {

9 out[j0++] = in[i];

10 } else {

11 out[j1 --] = in[i];

12 }

13 }

14 }

Fig. 1. Running example. The actual program under

static analysis has the loop unrolled.

1 i = 0

2 t = in[i] < threshold

3

4 ptr_0 = ct_select(t, &out[j0], ⊥)

5 ct_store(ptr_0 , in[i], [out])

6

7 ptr_1 = ct_select (!t, &out[j1], ⊥)

8 ct_store(ptr_1 , in[i], [out])

9

10 j0 = ct_select(t, j0+1, j0)

11 j1 = ct_select(t, j1, j1 -1)

Fig. 2. Mitigated code produced by Constantine

Note that we omit insensitive array accesses in the example traces since they are identical,
regardless of the inputs. Moreover, we omit accesses to the instruction cache as instructions at !9
and !11 are likely being allocated to the same cache line. By probing whether the o�set to array
out is at the beginning or at the end, an attacker learns whether each element is smaller or greater
than the threshold. For example, the �rst trace reveals that the �rst two values of array in are below
the threshold, while the second trace reveals that the �rst two values are above the threshold.

Beyond telling whether a program leaks information via cache side channel or not, we also tackle
the following two challenging questions in this paper:

(1) How much information is leaked via the cache side channel?
(2) How can we automatically eliminate cache side channel leakage (if any)?

3.1 �antification of Cache Side Channels

To quantify leakage, we adopt Channel Capacity, a widely-used measure of information leakage
in the literature [Lowe 2002; Newsome et al. 2009; Smith 2009], which is de�ned as the logarithm
(with base 2) of the total number of possible access traces that can be produced by a program. In
this example, during each iteration there is always a write to the array out either at the beginning
or at the end, depending on the input; all other memory operations are the same regardless of the
input. Therefore, each iteration induces two di�erent sub-traces. Moreover, during the last iteration
we have j0 = j1, so it induces only one sub-trace. Since the code branches on a di�erent input in
every iteration, we can multiply the possibilities of sub-traces to get the possibilities of the whole
trace, and conclude that the leakage is log2 (2

SIZE−1) = SIZE − 1 bits.
To compute channel capacity, a naive approach is to enumerate and count the number of all

sequences of memory traces. However, such an approach is computationally infeasible (e.g., even
the running example has 2SIZE possible execution paths). Observing this, state-of-the-art methods
use over-approximation to estimate the channel capacity. For example, CacheAudit [Doychev et al.
2013; Doychev and Köpf 2017] uses a set of possible cache states at each program point as the
abstraction of analyzing cache side channel leakage: given # possible cache states at the end of
program execution, the leakage is bounded by log2 (#). The abstraction has two limitations:

(1) CacheAudit analyzes programs under abstract program states and abstract cache states to trade
precision for performance. After the �rst iteration of code in Figure 1, for example, there are
two possible program states: either one with j0 = 1 ∧ j1 = 3 or one with j0 = 0 ∧ j1 = 2.
Hence, the tool approximates the concrete states as j0 ∈ {0, 1}∧j1 ∈ {2, 3}, and it incorrectly

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 274. Publication date: October 2023.

274:6 Cong Ma, Dinghao Wu, Gang Tan, Mahmut Taylan Kandemir, and Danfeng Zhang

determines that the second iteration can induce 4 unique sub-traces, whereas in reality, there
are only 2 possible sub-traces. Due to the imprecision, CacheAudit reports 384 unique traces
(i.e., 8.6 bits of leakage) while the true leakage is only of 3 bits.

(2) The number of possible cache states at each program point provides little insights on how
to mitigate the identi�ed side channels. Most importantly, it does not pinpoint at the root
cause of the identi�ed leakage (i.e., the program locations that introduce cache side-channel
leakage).

3.2 Mitigation of Cache Side Channels

Instead of using approximation of memory access traces, most state-of-the-art tools that automat-
ically mitigate cache side channels are built on the constant-time programming paradigm: they
identify sensitive control-�ow paths and sensitive memory access patterns (Section 2.1) in code
separately and then rewrite the code in a semantic-preserving manner to eliminate the violations.

For example, a recent work, Constantine [Borrello et al. 2021], employs a dynamic taint analysis
to identify violations of constant-time programming paradigm and then rewrites the o�ending code
in the following way. For sensitive control-�ow paths, it uses control �ow linearization technique to
rewrite the code so that both branches are executed while ensuring that only the correct branch
updates memory state. For sensitive memory accesses, it uses data �ow linearization technique
which directly hardens each vulnerable read/write operation by touching all possible memory
locations that the pointers used by the operation might point to (via a points-to analysis). We
show the pseudo-code of our running example after its �rst iteration is mitigated by Constantine
in Figure 2, where each vulnerable store operation is replaced with a conditional assignment
ct_select (e.g., line 4) and a secure memory subroutine ct_store (e.g., line 5). The subroutine
ct_store strides through the memory objects speci�ed in the third argument, and only performs
memory store to the address speci�ed by the �rst two arguments.
Using sensitive control-�ow paths and sensitive memory access patterns as the abstraction to

analyzing cache side channels has three limitations:

(1) While the abstraction can localize where information is leaked via cache side channels, it is
too coarse-gained and localized for analyzing the overall leakage of a piece of code.

(2) Since sensitive control-�ow paths cannot tell the common memory accesses in both branches,
control �ow linearization requires executing all code in both branches. The result is that
array out is accessed twice in the mitigated code.

(3) Since sensitive memory access patterns cannot tell which array elements might be accessed

at a program point, data �ow linearization requires accessing the whole array out. However,
as discussed above, only the �rst and last elements need to be touched once in order to hide
the sensitive memory address.

3.3 Di�erential Set

In this paper, we introduce a novel concept called Di�erential Set and discuss how it can be used to
automatically detect, quantify and mitigate side channels in a program. We tackle the following
limitations of existing abstractions for analyzing cache side channels:

(1) It is computationally infeasible to compute memory access traces, since the number of traces
is at least proportional to the execution paths the program can take, which can be exponential
to the size of a program. As a consequence, existing tools sacri�ce precision in other aspects
of program analysis to reduce the complexity, as discussed in Section 3.1.

(2) Sensitive control-�ow paths and sensitive memory access patterns are easier to compute,
but they only provide coarse-grained cache side-channel information. As a consequence,

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 274. Publication date: October 2023.

�antifying and Mitigating Cache Side Channel Leakage with Di�erential Set 274:7

Table 1. Di�erential sets in the first loop iteration.

Observation Point Memory Access Local Di�erential Set

1 in[i]@line 8 {〈in[0], true〉}

2 in[i]@line 9 {〈in[0], true〉}

in[i]@line 11

3 out[j0]@line 9 {〈out[0], Jin[0] < thresholdK〉,
out[j1]@line 11 〈out[3], Jin[0] ≥ thresholdK〉}

mitigation tools using the abstraction need to insert extra memory accesses in a conservative
way, as discussed in Section 3.2.

(3) Memory access traces provide little information for mitigation of cache side channels, while
sensitive control-�ow paths and sensitive memory access patterns are too coarse-grained
and localized for quanti�cation of cache side channels.

To tackle the challenges, we present Cache Di�erential Set (or Di�erential Set for short) as a
more appropriate abstraction for analyzing cache side channels. We give an informal treatment
in this section, and provide the formal de�nition in Section 4. The di�erential set of a program is
a collection of local di�erential sets of all memory accesses of a program. Intuitively, each local
di�erential set of a memory access is a set of addresses that might be touched by either the memory
access itself or its “sibling” memory accesses in other control �ows (when there is a sensitive
branch). To enable composition, each set of addresses is also associated with its path condition (i.e.,
a set of initial memories that reaches the memory access).
Consider the �rst iteration of the loop in the running example, which has 5 memory accesses.

We summarize in Table 1 the local di�erential set of each memory access (in the �rst loop iteration)
along with their corresponding di�erential set in the running example. The access to array in at
line 8 has a local di�erential set of size one as intuitively, (1) it is not inside a sensitive branch so it
has no siblings, and (2) its address does not depend on any secret value. Hence, the only element in
its local di�erential set is a pair 〈in[0], true〉 where in[0] is the memory address that it accesses
and true is its path condition (i.e., it is executed unconditionally).
On the other hand, the other 4 memory accesses all have siblings due to the sensitive branch

at line 8. Among those, the two accesses to in[i] at lines 9 and 11 have local di�erential sets of
size one as their siblings access the same address. They are grouped into the same observation
point since they are both the �rst memory access after the branch at line 8. Moreover, the path
condition of the local di�erential set is true, the logical or of the path conditions of in[i] at lines 9
and 11. However, the two accesses to array out at lines 9 and 11 have local di�erential sets of size
two as their siblings access di�erent addresses. They are grouped into the same observation point
since they are both the second memory access after the branch at line 8. Since they access di�erent
addresses, their path conditions cannot be merged in the local di�erential set.
Compared with existing approaches, the major bene�ts of di�erential set are two-folded. First,

di�erential set allows precise and compositional leakage quanti�cation. For each memory access in
the source code, its di�erential set � provides an upper bound (log2 |� |) on how much information
is leaked by the access per se. In the running example, only accesses to array out leak one bit of
information. Moreover, by concatenating local di�erential sets, we can quantify the leakage of any
program segment. For instance, in the �rst iteration of the running example, there are two possible
memory access traces, namely, {in[0], in[0], out[0]} and {in[0], in[0], out[3]}, which yields one
bit of leakage. Note that although in this example, all combinations of local di�erential set are
possible, in general, we can eliminate impossible combinations by the path conditions to compute
a precise leakage bound. For instance, consider the �rst two iterations of the running example. The
�rst iteration’s access to out has the local di�erential set as

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 274. Publication date: October 2023.

274:8 Cong Ma, Dinghao Wu, Gang Tan, Mahmut Taylan Kandemir, and Danfeng Zhang

Expressions

� ::= = | - | �[�] | ∗- | �1 ⊗ �2
Boolean Expressions

� ::= �1 � �2 | ¬� | �1 ∧ �2 | �1 ∨ �2
Statements

(::= skip | - := � | ∗- := � | �[-] := � | (1; (2 |
if � then (1 else (2

where ⊗ represents binary arithmetic operations, and � represents binary comparison operators

Fig. 3. Source Language Syntax.

�1 = {〈out[0], Jin[0] < thresholdK〉, 〈out[3], Jin[0] ≥ thresholdK〉}

while the corresponding access in the second iteration has

�2 = {〈out[0], Jin[0] ≥ thresholdK ∧ in[1] < thresholdK〉,

〈out[1], Jin[0] < thresholdK ∧ in[1] < thresholdK〉,

〈out[2], Jin[0] ≥ thresholdK ∧ in[1] ≥ thresholdK〉,

〈out[3], Jin[0] < thresholdK ∧ in[1] ≥ thresholdK〉}

Among all |�1 | × |�2 | = 8 combinations, 4 combinations (e.g., out[0] followed by out[2]) are
impossible due to incompatible path conditions. Therefore, di�erential sets allow us to precisely
quantify information leakage from both a single access, multiple accesses, and all accesses in a
program in a compositional way.
Second, di�erential sets allow e�cient mitigation of cache side channels. The reason is that by

de�nition, a local di�erential set contains all possible memory addresses that might be accessed at
the corresponding position in other executions where secret varies. Consider the local di�erential
sets in Table 1. The �rst three accesses to array in always access in[0] regardless of the secret
inputs. Hence, no mitigation is needed. The last two accesses to array out leak information. But,
since they either access out[0] or out[3], we can instrument a secure subroutine to sweep through
all elements in its local di�erential set (i.e., out[0] and out[3]) in both branches to eliminate the
cache side channel. Therefore, each branch has one extra memory access after mitigation, compared
with accessing all four elements in array out twice by Constantine, as illustrated in Figure 2.

4 DIFFERENTIAL SET

In this section, we formally de�ne di�erential set and prove that it provides a sound approximation
of cache side channel leakage.

4.1 Execution Trace

We �rst formalize language and attack model to reason about cache side channels. We de�ne a
simple imperative language whose syntax is shown in Figure 3. For expressions, we use = as a
numerical constant, - as a program variable, �[�] as an access to an array with a base address
of � at o�set � and ∗- as dereferencing memory. For commands, the simple language contains
standard commands such as assignments, sequential composition and branches. skip represents a
no-op. Note that the source language does not include loops; we assume that loops in the source
code are unrolled before the analysis. Moreover, we assume that each memory access in the source
code, e.g., in[8] in the running example, has a unique identi�er denoted as [.
We de�ne a con�guration as a pair 〈<, (〉 that consists of a memory< (i.e., a mapping from

variables/memory locations, including array elements, to their values) as well as (, the remaining

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 274. Publication date: October 2023.

�antifying and Mitigating Cache Side Channel Leakage with Di�erential Set 274:9

program to be executed. Recall that a program leaks information through a cache side channel
when it leaves di�erent memory footprints in cache when running on di�erent secret values. Hence,

each small-step evaluation rule has the form of 〈<, (〉
4
−→ 〈<′, (′〉 where event 4 tracks the memory

addresses being accessed by the evaluation step, as well as their corresponding memory access IDs.
When instruction cache is relevant, event 4 also includes branch labels (i.e., true/false branches).
For example, the �rst iteration of the running example in Figure 1 emits true/false branch labels
(i.e., tags !9/!11) when the branch outcomes are true/false respectively.

We consider two di�erent observation models: data-only model where only data addresses are
emitted in traces, and data+instruction model where both data addresses and branch tags are
emitted in traces. The full semantics with the latter is provided in the Appendix B. We assume
data-only model in most examples for its simplicity; we use the more secure data+instruction model
in the evaluation.

Finally, we write 〈<, (〉 ↩→ g if program (generates a memory trace g (i.e., a sequence of events)
when it is executed under<. We use g �033A to denote the subtrace of addresses.

4.2 �antifying Cache Side Channel

Intuitively, a cache side channel leaks information when given the same values of public inputs,
it produces di�erent memory footprints (i.e., di�erent traces) when secret inputs vary. The more
unique traces are possible, the more information is leaked. To re�ect the distinction between secret
and public inputs, we write the public input variables as ! and the secret input variables as � .

To quantify cache side channel leakage, we �rst introduce a valuation of public inputs !, written
as V : ! →<. Moreover, we say an initial memory< agrees with a valuation V, written as< A V, if
< agrees with V on all public inputs:

< A V ⇐⇒ ∀G ∈ !. <(G) = V(G)

Channel capacity, a concept well-studied in information theory, quanti�es the maximum amount
of information leakage. Note that due to public inputs, we need to consider the maximum leakage
among all valuations of public inputs [Doychev et al. 2013].

Definition 1 (Side Channel Leakage of a Program).

�� ((, !) = log2
(

max
V:L→<

|{g �033A | ∃<. < A V ∧ 〈<, (〉 ↩→ g}|
)

Consider (if G = 0 then�[0] = 1 else�[4] = 1) as program (. We have�� ((, {G}) = log2 1 = 0
since for any valuation of public input G , the branch outcome must be identical, resulting in the
same address trace. In other words, the program leaks no information if G is public. On the other
hand, �� ((, {}) = log2 2 = 1 as the empty valuation puts no restriction on the value of G , resulting
in two possible address traces with �[0] and �[4], respectively. In other words, the program leaks
1 bit of information when G is secret.

4.3 Di�erential Set

While De�nition 1 measures the side-channel leakage of a program, enumerating all traces that
can be produced by a program is, most of the time, infeasible. Instead, we employ a novel language
abstraction called di�erential set. Like channel capacity, di�erential set is parameterized on a
valuation V of public inputs !, which we use as implicit parameters throughout the section.

What makes di�erential set an appealing language abstraction for code analysis is its two main
ingredients that are available locally to each memory access: access set of each memory access,
and its “sibling” memory accesses. In short, access set de�nes the set of addresses that a single
memory access itself can access when secrets di�er; a memory access’s “sibling” memory accesses

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 274. Publication date: October 2023.

274:10 Cong Ma, Dinghao Wu, Gang Tan, Mahmut Taylan Kandemir, and Danfeng Zhang

are the ones at the same distance (measured by the number of memory accesses) to a branch whose
outcome depends on secret inputs. Based on those two ingredients, we de�ne local di�erential set
of a memory access as the set union of all access sets of itself and its siblings and moreover, (global)
di�erential set as the combination of all local di�erential sets. Finally, we show that di�erential set
leads to a sound approximation of side channel leakage (Theorem 1).

4.3.1 Access Set. For each memory access with ID [in the source code, we de�ne its access set
as the set of memory addresses that it can access with a given valuation V. Moreover, to allow
composition that we discuss shortly, each address U in the access set is associated with a path
condition PC. The path condition is represented by a set of initial memories that agrees with V and
leads to an execution where the address U is accessed at [. Formally,

Definition 2 (Access Set (AS)). AS([, V) =
⋃

U {〈U, PC([, U, V)〉 | PC([, U, V) ≠ ∅}
where PC([, U, V) = {< |< A V ∧ 〈<, (〉 ↩→ g ∧ 〈U, [〉 ∈ g}.

Note that when [is never executed under any initial memory that agrees with V, AS([, V) = ∅
(i.e., [is irrelevant to V). For example, consider (if G = 0 then �[0] = 1 else �[4] = 1), ! = {G}

and V = {G ↦→ 0}. We have AS(�[4] = 1, V) = ∅ since the false branch is never executed for any
initial memory where public variable G = 0.
Consider the �rst iteration of the running example in Figure 1. The AS of out[j0] at line 9 is
{〈out[0], Jin[0] < thresholdK〉} (we use the predicate on inputs to represent the path condition),
and the AS of out[j1] at line 11 is {〈out[3], Jin[0] ≥ thresholdK〉}. For simplicity, we omit the
path condition in the paper when it is irrelevant and simply write {out[0]} and {out[3]} as AS.

In data+instruction model, the branch instruction at Line 8 has instruction label !9 (resp. !11) in
AS when the true (resp. false) branch is taken, as instruction is also fetched from memory.

4.3.2 Equi-E�ect Form and Local Di�erential Set. Intuitively, access set models cache side channels
due to data �ows. To capture all cache side channels, we also need to model the ones due to control
�ows: the set of addresses being accessed by “sibling” memory accesses if the control �ow di�ers.
However, since di�erent control �ows might lead to di�erent numbers of memory accesses, �nding
such “sibling” memory accesses is a challenge. To tackle the challenge, we introduce a code format
called equi-e�ect form:

Definition 3 (Sensitive If-Statement). An if-statement if � then (1 else (2 in a program (

is sensitive under valuation V if there are two initial memories<1 A V and<2 A V, such that (1 and

(2 are executed when (is executed under<1 and<2 respectively.

Definition 4 (Eqi-Effect Form). An if-statement (if � then (1 else (2) is in an equi-e�ect

form if (1 and (2 contain the same number of memory accesses among all control-�ow paths. A

program is in an equi-e�ect form if every sensitive if-statement in the program is equi-e�ect3.

For example, a one-line program (if G = 0 then�[0] = 1 else (�[4] = 1;�[8] = 1)) is in an equi-
e�ect form when ! = {G} since the only branch depends on public variable G . However, the same
program is not in an equi-e�ect form when ! = ∅ since the true and false branches have di�erent
number of memory accesses. While most source programs are not in equi-e�ect form, transforming
an arbitrary program into equi-e�ect form is simple. To do so, we extend the source language
with a special command hole, which represents a dummy memory access; it is used to pad shorter
branches tomake them equi-e�ect. Using the special command, we can pad a sensitive branch by �rst
balancing inner-most nested branches and then pad outer ones recursively until the sensitive branch

3Note that with any over-approximation of sensitive if-statement (e.g., from a static taint analysis), the resulting equi-e�ect

program is still equi-e�ect according to the most precise semantical de�nition in De�nition 3.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 274. Publication date: October 2023.

�antifying and Mitigating Cache Side Channel Leakage with Di�erential Set 274:11

is properly balanced. For example (if G = 0 then (�[0] = 1; hole) else (�[4] = 1;�[8] = 1)) is
in a equi-e�ect form when ! = {} since both branches are balanced.

In general, a program can be transformed into many equi-e�ect forms. We prove shortly that the
particular form does not a�ect the soundness of di�erential set: it always provides an upper-bound
of cache side-channel leakage (Theorem 1). However, the placement of holes in an equi-e�ect
program does in�uence the performance of the mitigated program, which we explore in Section 5.2.

Sibling Accesses. We �rst note that an equi-e�ect program always produces the same number of
memory accesses (including holes) with any valuation of public inputs:

Corollary 1. For any equi-e�ect program and any valuation of public inputs, the program execution

emits the same number of memory accesses regardless of secret inputs.

Proof. By structural induction on program (. The interesting case is an if-statement. When the
branch is sensitive, the result is implied by De�nition 4 and induction hypothesis. Otherwise, the
same branch is taken given a valuation of public inputs regardless of secret inputs. �

Now, we can de�ne “sibling” memory accesses (in an equi-e�ect program) more precisely: two
memory accesses are siblings if they appear at the same position of execution traces. Due to
Corollary 1, it is equivalent to the following de�nition, which is more structural:

Definition 5 (Sibling memory accesses). Within an equi-e�ect program, two memory accesses

[1 and [2 are siblings, written as [1 ∼ [2, if there exists a sensitive if-statement (if � then (1 else (2)

such that 38BC0=24 (�, [1) = 38BC0=24 (�, [2), where the distance of any two program points is the

number of memory accesses between them.

Consider (if G = 0 then (�[0] = 1; hole) else (�[4] = 1;�[8] = 1)) which is in an equi-e�ect
form when ! = {}. Memory accesses A[0] and �[4] are siblings, and moreover, hole and �[8] are
siblings. Consider (if G = 0 then (if ~ = 0 then �[0] = 1 else �[4] = 1) else �[8] = 1) where
! = {} (i.e., both G and ~ are secrets). In this example, memory accesses A[0], A[4] and �[8] are
siblings as their distances to the branch with condition G = 0 are all 1. Note that by de�nition,
a memory access that is outside any branch or only appears in public branches has no siblings.
However, we make the sibling relation re�exive, i.e., ∀[. [∼ [for technical convenience.

Local Di�erential Set. For eachmemory access[, its local di�erential set with respect to a valuation
V, is the set of memory addresses that itself or its siblings might access:

Definition 6 (Local Differential Set). Within an equi-e�ect program, the local di�erential set
of a memory access [is: !�(([, V) =

⋃

[∼[′ �(([
′, V)

Recall that sibling memory accesses are the ones that appear at the same position of execution
traces of an equi-e�ect program. Hence, it captures all side channels produced at program point[due
to both data �ows and control �ows. In other words, if we instrument a program such that it accesses
all addresses in !�(([, V) when [is executed, all cache side channels are eliminated. Consider the
running example in Figure 1. Since out[j0]@line 9 and out[j1]@line 11 are siblings, their local
di�erential sets are both {〈out[0], Jin[0] < thresholdK〉}

⋃

{〈out[3], Jin[0] ≥ thresholdK〉}, as
summarized in Table 1. If we rewrite both line 9 and line 11 to access both out[j0] and out[j1] in
sequence, then in the instrumented code, the same sequence of memory addresses, namely in[0],
in[0], out[0] and out[3], will be accessed in both branches, thus removing the leakage.

4.3.3 Di�erential Set. Local di�erential set allows us to quantify and mitigate side channels at a
single program point [. To quantify the side channel leakage of a whole program or a program

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 274. Publication date: October 2023.

274:12 Cong Ma, Dinghao Wu, Gang Tan, Mahmut Taylan Kandemir, and Danfeng Zhang

fragment, we de�ne (global) di�erential set of a program (, which is intuitively a combination of
local di�erential sets of memory accesses in (.
We �rst de�ne an observation point > to be a maximal set of sibling memory accesses (i.e.,
∀[, [′ ∈ >. [∼ [′ and ∀[, [′ . [∈ > ∧ [∼ [′ ⇒ [′ ∈ >) and use OP to represent all unique
observation points in an equi-e�ect program. Additionally, we use >8 where 1 ≤ 8 ≤ |OP| to refer
to each observation point. For example, Table 1 shows three observation points in the running
example, where the second and third observation points contain two memory accesses each.

To formalize the set of possible memory accesses issued by an observation point, we lift the local
di�erential set de�nition to an observation point > as follows:

!�(> (>, V) , 〈^,∪〈0,?2 〉∈� (>,V)?2〉 ∪� (>, V) where � (>, V) =
⋃

[∈>

{�(([, V)}

Note that we use a special memory access ^ to represent the absence of the observation point > in
the de�nition; an observation point is “absent” when the given valuation V disagrees with its path
condition, so none of the memory accesses that belong to the observation point will be executed.
For example, consider (if G = 0 then �[0] = 1 else �[4] = 1), ! = {G} and V = {G ↦→ 0}. We
have !�(> ({A[4]}, V) = {〈^, true〉} since A[4] is never executed under V. The reason why we
need to account for absence of the observation point is to allow all path conditions to cover the
entire input space. Without ^, !�(> might have partial or even zero coverage as in the example,
which is problematic when we compose observation points and take the intersection of their path
conditions, which is the case in the de�nition of di�erential set of an equi-e�ect program (:

Definition 7 (Differential Set of an Eqi-Effect Program). For any equi-e�ect program (

and a valuation V,

�(((, V) =
{

0102 · · ·0 | OP | | (∀8 .〈08 , ?28〉 ∈ !�(
> (>8 , V)) ∧ (

⋂

9

?2 9 ≠ ∅)
}

Recall that each element in AS also tracks its corresponding path condition ?2 . The di�erential
set of a program is essentially a Cartesian set of the local di�erential sets of all observation points;
the di�erence is that the last condition (

⋂

9 ?2 9 ≠ ∅) rules out impossible combinations when
composing di�erential sets for leakage quanti�cation.
Finally, we note that the leakage of a program (can be measured by DS as follows:

Definition 8 (Differential Set Leakage). Given a set of public inputs !, an equi-e�ect program

(, the side channel leakage induced by the di�erential set of (is:

L((, !) = log2 (max
V:!→<

|�(((, V) |)

Example. We use the running example in Figure 1 to walk-through the key de�nitions introduced
above. For simplicity we will consider the �rst iteration of the loop only (note that the program is
already in its equi-e�ect form). Consider any valuation of public inputs V. There are in total three
observation points in the �rst iteration4, where in[i]@line 8 belongs to point 1, in[i]@lines 9
and 11 belong to point 2 and out[j0]@line 9 and out[j1]@line 11 belong to point 3. Moreover, the
access sets of the �rst three memory accesses are {in[0]} as they always access in[0] in the �rst
iteration regardless of secret inputs. The access sets of out[j0]@line 9 and out[j1]@line 11 are
{out[0]} and {out[3]} respectively in the �rst iteration. The di�erential set at each observation

4Note that starting from the branch at line 7, the �rst loop iteration only has three memory accesses to arrays.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 274. Publication date: October 2023.

�antifying and Mitigating Cache Side Channel Leakage with Di�erential Set 274:13

point, according to De�nition 7, are shown below, parameterized on valuation V.

!�(> (1, V) = {〈in[0], JtrueK〉}

!�(> (2, V) = {〈in[0], JtrueK〉}

!�(> (3, V) = {〈out[0], Jin[0] < thresholdK〉,

〈out[3], Jin[0] ≥ thresholdK〉}

Further, we can compute that the di�erential set of the �rst iteration of the loop is

{in[0]in[0]out[0], in[0]in[0]out[3]}

Hence, by De�nition 8 and the fact that DS remains the same for all public inputs, we have

L((, ∅) = log2 |{in[0]in[0]out[0], in[0]in[0]out[3]}| = 1

which provides a precise side channel leakage of 1 bit. Di�erential sets can be automatically
approximated via a static program analysis, which we explore further in Section 5.

4.3.4 Comparison with Execution Traces. The key di�erence between di�erential set and memory
access trace is that di�erential set trades precision for composition, making it more suitable for
static program analysis. To illustrate the di�erence more clearly, consider the following equi-e�ect
program with two consecutive secret-dependent branches where B is a secret input:

(if B then �[0] = 1 else hole); (if ¬B then hole else �[0] = 1)

This program has no data cache leakage before being transformed into an equi-e�ect form, as
it only produces one trace with A[0]. However, according to De�nition 7, its di�erential set is
{A[0] hole, hole A[0]} with any valuation of V. Accordingly, the di�erential set leakage of the
program is 1 bit according to De�nition 8. However, we emphasize that the loss of precision in
such corner cases enables us to reason about di�erential set in a compositional way: it is su�cient
to compute the local di�erential set of each memory access in isolation, and then combine them to
compute the (global) di�erential set of a whole program. The soundness result in the next subsection
assures that di�erential set serves as a sound approximation of memory access traces. Moreover, the
empirical study in Section 6.3 suggests that the over-approximation is precise enough in practice:
it reports the exact leakage bound on all benchmark programs used by prior work.

4.4 Soundness of Di�erential Sets

We prove that di�erential sets are sound, in the sense that the cache side channel leakage (De�ni-
tion 1) of an arbitrary program (which may or may not be in its equi-e�ect form) is always bounded
by the di�erential set leakage (De�nition 8) of any of its equi-e�ect variant. As a consequence, it
is safe to use di�erential set to reason about cache side channels. Moreover, if the di�erential set
leakage of a program’s any equi-e�ect variant is zero, then the program has no cache side channels.
To show soundness, the key observation is that a program in its equi-e�ect form has the same

memory access traces as the original program, except possibly with some holes inserted. So it is
possible to build an injection from traces produced by the original program to ones produced by its
equi-e�ect form. Consider an example with two sensitive branches:

if B1 then (A[0]; B[0]) else (A[0]; hole);

if B2 then (A[0]; hole) else (B[0]; A[0])

which is in equi-e�ect form. The original program (with holes removed) produces three traces
)1 = {A B A, A B B A, A A}, while its equi-e�ect form produces 4 traces)2={A B A hole, A B B A,
A hole A hole, A hole B A}. Note that with extra holes, a program can only create new traces
when it runs (e.g., from A B A to A B A hole and A hole B A); di�erent traces remain di�erent.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 274. Publication date: October 2023.

274:14 Cong Ma, Dinghao Wu, Gang Tan, Mahmut Taylan Kandemir, and Danfeng Zhang

Fig. 4. Overview of DSA

Theorem 1. Given a program (and any of its equi-e�ect variant (′, public inputs !, we have

�� ((, !) ≤ L((′, !)

by expanding de�nitions, this is equivalent to

log2
(

max
V:L→<

|{g �033A | ∃<. < A V ∧ 〈<, (〉 ↩→ g}|
)

≤

log2

(

max
V:!→<

�

�

�

{

0102 · · ·0 | OP | | 〈0 9 , ?2 9 〉 ∈ !�((> 9 , V) ∧ (
⋂

9

?2 9 ≠ ∅)
}�

�

�

)

The proof is included in the Appendix A.

5 DSA

In this section, we develop a static analysis tool, DSA, to automatically compute di�erential sets.
To showcase the value of di�erential set, DSA also automatically quanti�es and mitigates cache
side channels based on the computed di�erential sets. The work�ow of DSA is shown in Figure 4
where the grey boxes represent the major components that we will discuss further in this section,
and the white boxes represent data in between of the major components.

5.1 Symbolic Inputs, Addresses and AS

DSA is built on a model checker, CBMC [Clarke et al. 2004], to analyze the semantics (in the form of
propositional formulas) of an input C program. During the analysis, all program inputs are treated
in a symbolic way. The model checker computes the following information for each memory access

in the input C program: (1) a symbolic address that consists of a memory object ID variable Uobj

and a memory o�set variable Uoff, both in the domain of natural numbers, and (2) constraints on
symbolic address variables as well as variables induced by the program, including a symbolic path
condition that guards the memory access.
According to the de�nition of AS (De�nition 2), it is natural to generate symbolic AS in the

following format for each memory access [in the source code:

SymAS([) = ((Uobj[, Uoff[), pc[, 2>=B[)

where pc[is the path condition, and 2>=B[is the rest of constraints on variables. SymAS is then
fed into an alignment algorithm to help transforming the input program into an equi-e�ect form,
and subsequently produce a symbolic form of di�erential sets.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 274. Publication date: October 2023.

�antifying and Mitigating Cache Side Channel Leakage with Di�erential Set 274:15

Fig. 5. Naive Alignment vs Greedy Alignment: top half shows the result of native alignment and the lower

half shows the result of greedy alignment. Each white box shows AS for one memory access. The grey boxes

show LDS a�er merging ASes according to the alignment. The notation A[0..1] is a shortcut for {A[0], A[1]}

5.2 Alignment Algorithm

Recall that di�erential set is only de�ned on equi-e�ect programs. While Theorem 1 assures that
di�erential set always provides an upper bound of side channel leakage, the particular equi-e�ect
form chosen a�ects the tightness of the bound, as well as the e�ciency of mitigated code.
For example, consider a naive algorithm that matches memory accesses in the true and false

branches one by one and a variant of our running example where the following line is added to the
beginning of the true branch (count is an added pointer input):

(∗count) + +

The top of Figure 5 shows the equi-e�ect form of the last iteration of the running example. The ASes
are shown in white boxes and local di�erential sets are shown in grey boxes. Notice that the total
size of two local di�erential sets is larger compared with that of another equi-e�ect form shown at
the bottom of Figure 5; a larger local di�erential set typically implies less e�cient mitigation.5

To construct an equi-e�ect form that leads to e�cient mitigation, we �rst note that only sensitive
branches requires alignment. Then for each sensitive branch, DSA uses a greedy alignment algorithm

to match memory accesses on one branch to “similar” memory accesses on the other branch (e.g.,
the last two memory accesses in both branches). More precisely, the greedy alignment algorithm is
shown in Algorithm 1. This algorithm takes in two sequences of symbolic ASes – one from the
memory accesses within the true branch (le�) and one from the memory accesses within the false
branch (right). It outputs the input program in one of its equi-e�ect forms (represented as a list of
pairs which represents how memory accesses are aligned across the two branches).

The algorithm �rst picks one memory access with the largest AS size on the left side (line 8), and
then �nds the memory access on the other side that shares the most elements with it (line 9). Both
of functions GetIndexOfLargestAS and GetIndexOfMostSimilarAS internally use an SMT solver
to enumerate the concrete models of each symbolic AS to identify a pair (;?8E>C , A?8E>C) that has
the most similar ASes. We will discuss how enumeration is done and how we handle complicated
constraints in Section 5.4. The pair then splits both branches in half and the algorithm recursively

5Recall that to eliminate cache side channels, we need to access all elements in a local di�erential set to hide any sensitive

memory access.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 274. Publication date: October 2023.

274:16 Cong Ma, Dinghao Wu, Gang Tan, Mahmut Taylan Kandemir, and Danfeng Zhang

1 Function GreedyAlign(le�, right):
Input: Lists of symbolic AS of two branches, each in the form [;0, ;1, . . . , ;=] where ;8 is a symbolic

AS

Output: A equi-e�ect program represented as a list of pairs: [(;0, A0), (;1, A1), . . . , (;<, A<)] where

;8 or A8 is either an added hole or a memory access in the original program

2 if le� is empty then

3 return [(hole, o), ∀> ∈ right]

4 end

5 if right is empty then

6 return [(o, hole), ∀> ∈ le�]

7 end

8 ;_?8E>C ← GetIndexOfLargestAS(le�)

9 A_?8E>C ← GetIndexOfMostSimilarAS(right, le� [;_?8E>C])

10 before_?8E>C ← GreedyAlign(le� [: ;_?8E>C], right [: A_?8E>C])

11 a�er_?8E>C ← GreedyAlign(le� [;_?8E>C + 1 :], right [A_?8E>C + 1 :])

12 return before_?8E>C + [(le� [;_?8E>C], right [A_?8E>C])] + a�er_?8E>C

Algorithm 1: Greedy Alignment Algorithm

aligns the remaining chunks (Lines 10 and 11). In case of nested branches, the algorithm aligns the
innermost branches �rst and then progressively align the outer ones. As each aligned branch is in
equi-e�ect form, the algorithm eventually produces a program in its equi-e�ect form.
Return to the example in Figure 5. The Greedy algorithm �rst identi�es out[0..3] on both

branches as pivots, then recursively identi�es in[3] on both branches as pivots and inserts two
holes at the beginning of the false branch. The produced program in its equi-e�ect form is illustrated
at the bottom of Figure 5. Note that the resulting di�erential set is smaller compared to the naive
algorithm.

Observation points and symbolic local di�erential sets. From the output of the greedy alignment
algorithm, it is straightforward to compute observation points: each pair of memory accesses in
the output belongs to the same observation point. By De�nition 6, the symbolic local di�erential
set of a memory access [and its corresponding observation point are computed as follows:

SymLDS([) = {SymAS([′) | ∃8 . [, [′ ∈ OP(8))}

5.3 �antification

We now explain how to quantify cache channel leakage via the computed symbolic local di�erential
set of each memory access. Recall that the di�erential set leakage (De�nition 8) is de�ned based on
di�erential set (De�nition 7), the set of unique and feasible combinations of local di�erential sets
given any valuation of public inputs.
We reduce the problem of computing di�erential set leakage to a (projected) model counting

problem. We �rst create observation point variables Vobj
i

and Voff
i

for each observation point; they
stand for the memory object ID and object o�set that the observation point might access. Since for
any program input, only one memory access [∈ OP(8) is executed, we use path condition of each
memory access to “select” which one will occur for each observation point, giving us:

F (8) =
∧

[∈OP(8)

(pc[⇒ V
obj

8 = U
obj
[) ∧ (pc[⇒ Voff8 = Uoff[) ∧ 2>=B[

where SymAS([) = ((Uobj[, Uoff[), pc[, 2>=B[).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 274. Publication date: October 2023.

�antifying and Mitigating Cache Side Channel Leakage with Di�erential Set 274:17

We can now compute the information leakage of one observation point by counting how many
di�erent addresses the observation point can reach given the constraints.

log2
(

#{(Vobj8 , Voff8) | F (8)}
)

To compute the information leakage of the entire program, we concatenate observation point
variables into a tuple that represents the trace, and compute the size of the set of traces predicated
on the conjunction of constraints of each observation point:

log2
(

#{(Vobj1 , Voff1 , . . . , V
obj

#
, Voff#) |

#
∧

8=1

F (8)}
)

In order to avoid over-counting the size of each local di�erential set due to public inputs, DSA
runs a noninterference test on F (8): given any valuation of public inputs but di�erent valuations of

secret inputs, could there be di�erent (Vobj8 , Voff8) under the constraint F (8)? If the noninterference
test passes, we know that the size of di�erential set is 1 given any valuation of public inputs. Hence,
the observation point is removed from further analysis. For example, the observation point in
if(p){arr[p]+ = 1} is noninterferent on secret input; hence, it is removed before counting.

Compositional quanti�cation. We emphasize that di�erential set by de�nition enables composi-
tional reasoning, which is important in practice when the constraints on the whole program is com-
plicated. We can partition all observation points into sub-ranges (A0 = 0, A1], (A1, A2], ..., (A"−1, A" =

] and compute a sound but less precise leakage bound as follows:

∑

0≤8≤"−1

log2
(

#{(Vobj1+A8
, Voff1+A8

, . . . , V
obj
A8+1 , V

off
A8+1
) |

A8+1
∧

9=1+A8

F (9)}
)

5.4 Mitigation

To mitigate cache side channels in a program, DSA transforms each memory access (including
holes) in the equi-e�ect program to access all addresses in its local di�erential sets in sequence. As
a consequence, each observation point in the mitigated program will make the same sequence of
memory accesses, and hence, the mitigated program becomes cache side-channel free.

Enumeration. Similar to quanti�cation, DSA �rst runs a noninterference test on each F (8) to

reduce imprecision due to public inputs. That is, whenever (Vobj8 , Voff8) is noninterferent on secret
inputs under constraint F (8), the corresponding memory accesses are left in source code as is,
since they leak no information.

For the remaining observation points, DSA uses an SMT solver to enumerate concrete models (i.e.,
values of object ID and o�set variables) of the symbolic LDS of each memory access. More precisely,

for a memory access [, DSA �rst enumerates the concrete memory object IDs that the Uobj[can
refer to, and it then enumerates possible o�sets for each concrete memory object. As constraints on
both object ID variable and o�set variable can be large in practice, the naive enumeration approach
can be ine�cient. In such cases, we use the following constraint simpli�cation technique to trade
precision for performance, while still soundly over-approximating each local di�erential set.

We observe that not all clauses in the constraint system are equally important for enumerating a

local di�erential set: clauses�1 that directly constrain U
obj
[and Uoff[are the most important. Further,

clauses �2 that directly constrain variables de�ned in �1 are also relevant, and so on. Based on the
observation, DSA builds a clause graph where nodes represent SMT clauses and edges represent
def-use relations on constraint variables. To enumerate concrete models of a local di�erential set of
a memory access [within reasonable amount of time, DSA prunes the constraint clauses that are

 -distance away from the Uobj[and Uoff[. The variable is initially set to 10, and if enumeration

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 274. Publication date: October 2023.

274:18 Cong Ma, Dinghao Wu, Gang Tan, Mahmut Taylan Kandemir, and Danfeng Zhang

times out after 3 seconds, we gradually decrement and retry enumeration until it succeeds within
3 seconds. Note that the pruning procedure is sound, since it can only over-approximate, but not
under-approximate a local di�erential set.

Linearization. DSA adopts data-�ow linearization technique from Constantine [Borrello et al.
2021] to e�ciently touch each concrete memory address identi�ed in the enumeration step. The
details are included in the Appendix C due to space constraint.

6 IMPLEMENTATION AND EVALUATION

6.1 Implementation

DSA uses the frontend of CBMC [Clarke et al. 2004] to inline functions and unroll loops. It then
translates a C program into propositional formulas for further analysis. The propositional formulas
encode (1) the symbolic address at each memory accesses and their corresponding path conditions,
and (2) transition relation of the entire program. CBMC also runs an alias analysis and encode the
information in the formula. DSA implements the alignment algorithm in Section 5.2 and transforms
code into its equi-e�ect form in Python using pyscparser [Bendersky 2022]. For quanti�cation,
DSA uses a state-of-art approximate model counter approxMC [Soos et al. 2020] to compute the
di�erential set leakage as discussed in Section 5.3. For mitigation, DSA uses Z3 [De Moura and
Bjørner 2008] to generate concrete models of each local di�erential set as discussed in Section 5.4.
We use the AVX512 ISA extension to implement secure memory access, which is the same as
Constantine.

6.2 Evaluation Setup

Since DSA targets two distinct challenges, namely quanti�cation and mitigation of cache side-
channel, we answer the following questions in the evaluation:

(1) How precise are the leakage bounds produced by DSA, and how do they compare to state-of-
art quanti�cation tools?

(2) How e�cient are the mitigated programs produced by DSA, and how do they compare to the
ones produced by state-of-art mitigation tools?

We use three sets of programs evaluated in prior works. The �rst two sets of programs are
from Blazer [Antonopoulos et al. 2017] and CacheAudit [Doychev and Köpf 2017]; these programs
are commonly used to evaluate quanti�cation tools. Blazer’s benchmark consists of vulnerable
programs from previous literature and snippets from the DARPA STAC challenge [STAC 2017].
Since the benchmark is written in Java, we manually ported them to C. CacheAudit’s benchmark
consists of variants of the square and multiple routine in RSA implementation. The third set of
programs is from Constantine [Borrello et al. 2021], the state-of-the-art side-channel mitigation
tool. Those programs were collected from multiple previous works and consist of crypto code and
textbook algorithms. We exclude Botan C++ since DSA only supports C code.
We fully unroll the loops that have constant bounds. For programs that contain loops whose

conditions depend on inputs, we unroll the loop 100 times, which is also the maximum loop
unrolling factor used by CacheAudit. Note that for fairness reason, all tools are run on the same

unrolled version of source code in the evaluation. Moreover, we found that the approximate model
counter used by DSA is slow for a few programs where control-�ow and data-�ow dependency
is complicated. For those cases, we manually apply the compositional quanti�cation approach as
discussed in Section 5.3, with each loop iteration as the unit of leakage quanti�cation. Moreover,
all public and secret program inputs are symbolized in the analysis.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 274. Publication date: October 2023.

�antifying and Mitigating Cache Side Channel Leakage with Di�erential Set 274:19

Table 2. �antification Results: the case marked with ★ uses compositional reasoning.

Program Leakage Leakage Reported by Time
(bits) DSA CacheAudit (s)

Blazer/Array Safe 1 1 1 52

Blazer/Array Unsafe 1 1 1 6

Blazer/LoopAndBranch Safe log2 (3) log2 (3) log2 (3) 29

Blazer/LoopAndBranch Unsafe log2 (3) log2 (3) log2 (3) 28

Blazer/Sanity Safe 1 1 1 31

Blazer/Sanity Unsafe 1 1 1 13

Blazer/Straightline Safe 1 1 log2 (3) 7

Blazer/Straightline Unsafe 1 1 log2 (3) 34

Blazer/Unixlogin Safe log2 (3) log2 (3) N/A 12

Blazer/Unixlogin Unsafe log2 (3) log2 (3) N/A 8

Blazer/modPow1 Safe 32 32 N/A 432

Blazer/modPow1 Unsafe 32 32 N/A 364

Blazer/modPow2 Safe 32 32 N/A 463

Blazer/modPow2 Unsafe 32 32 N/A (★) 54

Blazer/passwordEq Safe 16 16 16 4

Blazer/passwordEq Unsafe log2 (17) log2 (17) log2 (17) 4

Blazer/k96 Safe 32 32 N/A (★) 38

Blazer/k96 Unsafe 32 32 N/A (★) 38

Blazer/gpt14 Safe 32 32 N/A 332

Blazer/gpt14 Unsafe 32 32 N/A (★) 9

Blazer/login Safe 16 16 16 4

Blazer/login Unsafe log2 (17) log2 (17) log2 (17) 15

CacheAudit RSA/sqr_and_mult 1 1 1 11

CacheAudit RSA/sqr_and_always_mul 1 1 1 10

CacheAudit RSA/win_mod_exp_libgcrypt1.6.1 log2 (9) log2 (9) log2 (51) 3

CacheAudit RSA/win_mod_exp_libgcrypt1.6.3 0 0 0 28

CacheAudit RSA/scatter_gather_openssl_1.0.2f log2 (9) log2 (9) 1152 892

CacheAudit RSA/defensive_gather 1 1 1 435

All experiments are performed on a c5.24x machine on AWS with Ubuntu 20.04 featuring Intel
Xeon Platinum 8000 series processor with 96 vCPU and 192 GB of memory.

6.3 �antification Results

We�rst present the results on quanti�cation benchmarks from Blazer [Antonopoulos et al. 2017] and
CacheAudit [Doychev and Köpf 2017]. Since the Blazer benchmark assumes a di�erent adversary
model (i.e., leakage via the number of instructions being executed), whereas we assume a cache-
based adversary, we adjusted the true leakage of each program due to the di�erence in attack
model. For example, a sensitive branch where two branches have the same number of instructions
is deemed free of side channels in their model, but it is insecure in terms of the absence of cache
side channels, as even with the same number of instructions, each branch might leave its unique
secret-dependent footprints in the cache. The CacheAudit benchmark also assumes a cache-based
adversary, which allows us to reuse the benchmark programs and perform a direct comparison
with CacheAudit [Doychev and Köpf 2017]. We obtained the public version of CacheAudit and run

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 274. Publication date: October 2023.

274:20 Cong Ma, Dinghao Wu, Gang Tan, Mahmut Taylan Kandemir, and Danfeng Zhang

it on the same machine as our tool. Note that since the public version supports only a subset of x86
instructions, it is unable to analyze some benchmark programs, marked with N/A.

We summarize the evaluation results in Table 2 where the second column is the actual side chan-
nel leakage of each program, obtained from prior works. The exception is those from Blazer which
were designed for timing side-channel research, so we manually adjust them. Note that DSA reports
accurate cache side channel leakage for all programs within a reasonable amount of time. The pro-
gram scatter_gather_openssl_1.0.2f takes the longest time (15 minutes), which is due to a high
loop unrolling factor. In comparison, for the majority of programs that it can analyze, CacheAudit
also generates an accurate bound; notably, other than a few cases that it fails to analyze due to unsup-
ported instructions, CacheAudit is accurate on all Blazer benchmark programs. However, CacheAu-
dit reports imprecise results for Blazer/Straightline_Safe, Blazer/Straightline_Unsafe,
win_mod_exp_libgcrypt1.6.1 and scatter_gather_openssl_1.0.2f.

For the former two programs in Blazer benchmarks, DSA is more precise because DSA only counts
variations due to the secret inputs, whereas CacheAudit does not distinguish public and secret
inputs. Hence, for a code pattern like (if ?D1;82 then (if B42A4C then �[0] else �[4]) else�[8])
which are found in those benchmarks, DSA correctly reports a leakage of 1 bit, meaning that varying
secret inputs can at most induce two di�erent memory traces, while CacheAudit reports a leakage
of log2 (3) bits, which over-counts the in�uence of public value. To understand why DSA is more
precise on the latter two cases, we present the code segment of scatter_gather_openssl_1.0.2f:

1 if (0 <= k && k <= 7) {

2 for (i = 0; i < 384; i++){

3 p[i] = buf[k+i*8];

4 }}

Here, k is a secret input, and it is used to index into an array in the loop. CacheAudit fails to reason
about correlated leakage across loop iterations and produces an imprecise approximation (3× 384 =
1152 bits). Nevertheless, the predicates associated with each di�erential set allows DSA to reason
about such correlation precisely, and correctly conclude that only 3 bits are leaked by the for loop.
In addition, the else branch adds another possible memory trace, making the total leakage log2 (9)
bits. For the same reason, DSA is able to report a precise bound for win_mod_exp_libgcrypt1.6.1.

6.4 Mitigation Results

We note that Constantine assumes a slightly di�erent attack model than DSA: it enforces the
constant-time principle [Almeida et al. 2016]. To make an apple-to-apple comparison, we use
data+instruction mode of DSA and use the same technique as Constantine to remove sensitive
branches. Hence, the mitigated code of DSA and Constantine has the same level of security. Since
the mitigated code of sensitive branches is the same, we elaborate on a subset of programs that
contain no sensitive branches. Both implementations of Constantine and DSA use the AVX512
vector extension and striding width _ = 4 to capture a strong attacker model, where an attacker
can observe accesses to the individual banks within a cache line [Yarom et al. 2017]. For each
benchmark program, we compare the runtime overhead of the mitigated programs produced by
DSA and Constantine. We run both programs using the same random input �le for 2000 times, and
collect the number of user-level CPU cycles using the tool ?4A 5 .

We �rst note that the mitigated code generated by DSA removes cache side channels with fewer

memory accesses compared to taint-based approaches, such as Constantine. In particular, we found
that among 15762 memory accesses that use sensitive array index, for 1056 (6.7%) cases, the memory
region that each di�erential set covers is smaller than the whole array. Note that existing mitigation
tools that use taint analysis to identify vulnerably accesses, including Constantine, need to stride

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 274. Publication date: October 2023.

�antifying and Mitigating Cache Side Channel Leakage with Di�erential Set 274:21

Chronos/des Chronos/des3 Libgcrypt/des Libgcrypt/two�sh Pycrypto/arc4

0.2

0.4

0.6

0.8

O
v
er
h
ea
d

Constantine

DSA

Fig. 6. Runtime overhead for mitigation benchmarks where DSA incur less memory footprint due to the

preciseness of di�erential set

over the entire array for those 1056 accesses. Because of the extra precision o�ered by di�erential
set, we observe a consistent reduction of mitigation overhead in all �ve benchmark programs that
contain at least one of those 1056 cases (shown in Figure 6).

We use two examples to demonstrate the strength of DSA. The �rst comes from Chronos/DES3:

1 const uint8_t pc1 [256] = {...};

2 const uint32_t pc2 [1024] = {...};

3 unsigned long a=sec0;

4 a = pc1[a];

5 p = pc2[2 * a + 0]

Notice that line 5 contains a sensitive memory access because a is secret-dependent. The mitigated
code produced by Constantine accesses all elements in array pc2 due to the lack of di�erential set,
whereas the mitigated code produced by DSA only accesses elements in the di�erential set, which
consists only 1/8 elements of the entire array. The reason is that the constant lookup table pc1
only contains 128 unique even values from 0 to 254. So the di�erential set contains exactly 128
elements. In this case, DSA reports 35% overhead, compared to 49% overhead of Constantine.
The second example comes from ARC4 implementation in pycrypto:

1 unsigned char state [256];

2 ...

3 int i2 = (key[i1] + state[i] + i2) % 32;

4 state[i] = state[i2];

i2 contains secret key, which is leaked through the array access at line 4. Because i2 is computed
using a modular, its value can only range from 0 to 31. Therefore the DS guided mitigation only
strides over a partial array. In this case, DSA reports 9% overhead, compared to 10% of Constantine.

In other benchmarks, both DSA and Constantine need to stride over the entire array; they exhibit
similar overhead for both DSA and Constantine (data included in Appendix D). While overheads
of DSA and Constantine di�er, we are unable to attribute the di�erence to the use of di�erential
set. For example, there are a few cases where DSA produces less e�cient mitigated code. One
reason is that Constantine works on IR code while DSA works on C code. Consequently, DSA
sometimes mitigates more sensitive memory accesses compared with Constantine, as some of those
accesses are either removed or reduced by a compiler. For example, we �nd that the LLVM optimizer
eliminates consecutive array accesses whose value is unchanged. For example, the following code
snippet is taken from ARC4 program in PYCRYPTO benchmark:

1 register int t = self ->state[x];

2 self ->state[x] = self ->state[y];

3 self ->state[y] = t;

4 register int xorIndex=

5 (self ->state[x]+self ->state[y]) % 256;

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 274. Publication date: October 2023.

274:22 Cong Ma, Dinghao Wu, Gang Tan, Mahmut Taylan Kandemir, and Danfeng Zhang

Here, self->state[y] is loaded at line 5, but the array element is not changed since its last stored
at line 3. The compiled IR code preserves the value of self->state[y] in a virtual register and
skips the load at Line 5, reducing the memory accesses. This pattern is made especially prevalent
due to loop unrolling. We leave an IR- or binary-level version of DSA as future work.

7 RELATED WORK

Various automated vulnerability analyses have been developed for cache side channels.

Detection. There are various tools that detect cache side-channels. CacheD [Wang et al. 2017]
performs symbolic execution on one concrete execution path to check whether each data access
on the path is secret-dependent or not. However, it cannot detect sensitive control-�ow paths.
CaSym [Brotzman et al. 2019] and SpecSafe [Brotzman et al. 2021] use cache-aware symbolic execu-
tion that keeps track of abstract cache state to cover multiple execution paths in the program, and
hence soundly detects cache side channels. CacheS [Wang et al. 2019] uses abstract interpretation
with a novel abstract domain to soundly detect both sensitive control-�ow paths and sensitive
memory accesses separately. DATA [Weiser et al. 2018] and Stacco [Xiao et al. 2017] follow a
dynamic approach that runs a program multiple times and uses statistical methods to detect leakage
based on the produced memory traces. However, the dynamic approach might miss cache side
channels. Compared to these works, DSA can soundly detect, quantify and mitigate cache side
channels, thanks to the novel abstraction of di�erential set.

Quanti�cation. CacheAudit [Doychev et al. 2013] develops a novel abstract interpretation to
reason about cache side channels. Notably, the abstract domain supports three models: timing-
based, access-based, and trace-based adversaries, while DSA assumes trace-based adversaries. Its
successor [Doychev and Köpf 2017] further relaxes the cache model to be more abstract and �exible.
At a high-level, both tools use abstract interpretation to over-approximate the number of abstract
memory traces that a program can produce. Due to the imprecise nature of abstract interpretation
as well as the fact that it cannot model correlation of leakage at multiple program points, these
tools sometimes report imprecise leakage bounds, as con�rmed on both our running example
and the benchmark programs evaluated in Section 6.3. Abacus [Bao et al. 2021] uses symbolic
execution on one concrete execution trace to obtain SMT formulas for each branch condition and
data access address along the trace. Then, it uses Monte Carlo sampling to estimate the leakage
in bits for each branch condition and data access address. However, Abacus might underestimate
side channel leakage from unexplored control-�ow paths. In contrast, DSA uses di�erential set to
soundly compute what addresses might be accessed in all control-�ow paths.

Also related to our work are prior analysis techniques that target timing channels, which assume
a related but di�erent threat model (Section 2.2). Various tools [Antonopoulos et al. 2017; Chen et al.
2017; Noller and Tizpaz-Niari 2021; Pasareanu et al. 2016; Phan et al. 2017] address the problem of
quantifying timing side-channel leakage, i.e., to measure how much information is leaked via a
program’s execution time. However, most of them do not model microarchitectural features, such
as CPU cache. Instead, they simply assume program execution time is accurately described by
the number of executed instructions (or, steps taken in an operational semantics). For example,
Pasareanu et al. [2016] use symbolic execution and Max-SMT solver to automatically derive public
inputs that leads to most leakage, and quantify the leakage for attackers that use these inputs.
In comparison, dynamic tool QFuzz [Noller and Tizpaz-Niari 2021] uses program running time
and hence, does model microarchitectural features. It builds a fuzzing driver that partitions the
input space with their corresponding execution time, and then uses the number of partitions to
compute timing side-channel leakage. However, the dynamic tool is unsound. Moreover, these
quanti�cation techniques are not directly applicable to cache side-channel, since execution time

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 274. Publication date: October 2023.

�antifying and Mitigating Cache Side Channel Leakage with Di�erential Set 274:23

is often modeled as one number, whereas DSA needs to examine traces of memory access traces,
which is less tractable without the use of di�erential set.

Mitigation. Side channel detection and mitigation tools are typically built on the constant-time
programming paradigm: they detect sensitive control-�ow paths and memory accesses and rewrite
them separately to remove side channels. For sensitive control-�ow paths, Molnar et al. [2005]
introduce the program counter security model and propose a program transformation strategy using
conditional assignment, and Coppens et al. [2009] implement a compiler backend that removes
timing channels via predicated execution on X86 processors. Recent mitigation tools [Borrello
et al. 2021; Wu et al. 2012] implement a secure select function that executes both branches while
preserving the original program semantics. For sensitive memory accesses, SC-Eliminator [Wu et al.
2012] pre-loads all elements in lookup tables with sensitive memory accesses. However, pre-loading
o�ers weak security assurance: an attacker might interrupt between the pre-loading and sensitive
memory access. Raccoon [Rane et al. 2015] uses transactional memory to carry out operations
in decoy paths, and uses Path ORAM [Stefanov et al. 2018] to obliviously access array elements.
However, ORAM can introduce substantial run-time overhead [Borrello et al. 2021]. FaCT [Cauligi
et al. 2019] is a domain-speci�c language that allows programmers to write code in a subset of C,
which is then automatically compiled to constant-time binary. However, FaCT also puts restrictions
on its source code, such as programs that index memory based on secret. Constantine [Borrello et al.
2021] implements a linearization technique that transforms each sensitive memory access with a
subroutine that e�ciently sweeps through memory regions that can be reached by the memory
access. Linearization (the same approach adopted by DSA) o�ers strong security assurance, but
due to the lack of di�erential set information, Constantine needs to sweep through a whole region
reachable from problematic pointers. In contrast, DSA can reason at granularity of elements in
di�erential set, allowing the mitigated programs to introduce fewer extra memory accesses, as
shown in Section 6.4.

8 CONCLUSION AND FUTURE WORK

We introduce the concept of di�erential set for modeling and mitigating cache-based side channels.
Di�erential set provides a sound abstraction for describing the memory access patterns of an entire
program. Based on this new concept, we have developed an automated analysis tool called DSA,
Di�erential Set Analyzer. DSA can both quantify and mitigate cache side channels. The evaluation
shows that it reports similar or tighter leakage bounds and more e�cient mitigation code, compared
to the state of the art tools.

In this paper, we use a technique similar to bounded model checking to reason about di�erential
sets. It might be useful to explore other techniques, such as abstract interpretation, to improve
DSA’s scalability. Moreover, we adopt the linearization approach of prior work to hide a real address
among all possible addresses in a local di�erential set. However, such software-level mitigation
can be quite expensive. We �nd that the abstraction of di�erential set is simple enough that the
mitigation task can be o�oaded to hardware. For example, before executing a vulnerable program,
we can provide local di�erential sets to memory system as a blueprint for mitigation. We can modify
the memory system such that it e�ciently obfuscates the memory access according to di�erential
set. We plan to investigate such software-hardware cooperative solutions in the future.

ACKNOWLEDGMENTS

We would like to thank the reviewers for their constructive feedback that was very helpful toward
improving this work. This research was supported in part by the NSF grants CNS-1956032, CNS-
1942851, CNS-2207197, CNS-1652790, and CNS-1801534.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 274. Publication date: October 2023.

274:24 Cong Ma, Dinghao Wu, Gang Tan, Mahmut Taylan Kandemir, and Danfeng Zhang

DATA-AVAILABILITY STATEMENT

The DSA implementation and instruction to reproduce the results are publicly available[Ma et al.
2023].

A PROOF OF THEOREM 1

Proof. We prove that �� ((, !) ≤ �� ((′, !) = L((′, !). We �rst prove �� ((′, !) = L((′, !) by
showing that for any valuation V, the following condition holds:

|{g �033A | ∃<. < A V ∧ 〈<, (′〉 ↩→ g}| =

|{0102 · · ·0 | OP | | 〈0 9 , ?2 9 〉 ∈ !�((> 9 , V) ∧ (
⋂

9

?2 9 ≠ ∅)}|

Consider any two execution traces 〈<, (′〉 ↩→ g and 〈<′, (′〉 ↩→ g ′ where < A V and <′ A
V. We have |g | = |g ′ | by Corollary 1. Moreover, for each pair of events g [8] = 〈033A, [〉 and
g ′ [8] = 〈033A ′, [′〉, [and [′ must belong to some observation point > ∈ OP, as both sensitive and
non-sensitive branches have a constant number of memory accesses in equi-e�ect form. In other
words, the set of observation points that participate in all executions with valuation V are the same
regardless of the secret input.
To prove �� ((′, !) = L((′, !), we show that there is a bijection between the set of actual

memory traces and the set derived from composing observation points. We build the bijection in the
following way. For any 〈<, (′〉 ↩→ g where g = 〈01, [1〉〈02, [2〉 · · · 〈0# , [# 〉. If [8 ∈ OP(9) for some
9 , we construct 0′9 = 08 . For the remaining observation points, we set the corresponding address to

be ^. It is easy to check that the constructed trace of 0′9 exists on the RHS since (
⋂

9<B4C 9 ≠ ∅) as

at least< is an element of the intersection, and moreover, it is unique. On the other hand, consider
any two traces 〈<′, (′〉 ↩→ g and 〈<′, (′〉 ↩→ g ′ such that g ≠ g ′. Since g ≠ g ′, there exist at least
one observation point, which we call > , at which point the two traces di�er. Hence, the mapping
constructed above maps g and g ′ to di�erent elements on the RHS. Similarly, for every composition
on the RHS, we can �nd an initial memory state that induces a unique [on the LHS. Thus we build
a bijection. Hence, �� ((′, !) = L((′, !).

Next, we prove�� ((, !) ≤ �� ((′, !) by showing that for any valuation V, the following condition
holds:

|{g �033A | ∃<. < A V ∧ 〈<, (〉 ↩→ g}| ≤ |{g �033A | ∃<. < A V ∧ 〈<, (′〉 ↩→ g}|

By �xing V, we prove that there is an injection from the set of memory traces of ((named)) to
the set of possible memory trace of (′ (named) ′). We �rst choose arbitrary g0, g1 ∈) produced by
initial memories<0,<1 such that g0 ≠ g1. The same memories<0,<1, when ran on (′, produce
traces in) ′ which we call g ′0 and g

′
1 respectively. We argue that g ′0 ≠ g

′
1 by contradiction. Notice

that we get g0 (resp. g1) if we remove all holes in g ′0 (resp. g
′
1). Hence, if g

′
0 = g

′
1 that means g0 = g1,

contradiction. Since the construction holds for all traces in) , the constructed relation is an injection.
Therefore, we have |) | ≤ |) ′ | and hence, �� ((, !) ≤ �� ((′, !).

Putting all pieces together, we showed that �� ((, !) ≤ L(�(, !).
�

B FORMALIZING TRACE SEMANTICS

Language Semantics. Recall that to model program execution with side channels, we de�ne a
con�guration as a pair 〈<, (〉 that consists of a memory< (i.e., a mapping from variables/memory
addresses, including array elements, to their values) as well as (, the remaining program to be
executed. Recall that a program leaks information through a cache side channel when it leaves

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 274. Publication date: October 2023.

�antifying and Mitigating Cache Side Channel Leakage with Di�erential Set 274:25

eval(�,<) = E

〈<,- := �〉
;>2 (�)
−−−−−→ 〈[-/E]<, skip〉

(Asgn)
<(-) = G ∧ eval(�,<) = E

〈<, ∗- := �〉
;>2 (�) ·G
−−−−−−→ 〈[G/E]<, skip〉

(Asgn-Ptr)

<(-) = G ∧ eval(�,<) = E

〈<,�[-] := �〉
;>2 (�) · (�+off�×G)
−−−−−−−−−−−−−−−→ 〈[� + off� × G/E]<, skip〉

(Asgn-Arr)

〈<, (1〉
4
−→ 〈<′, (′1〉

〈<, (1; (2〉
4
−→ 〈<′, (′1; (2〉

(Seq1)
〈<, skip; (2〉 −→ 〈<, (2〉

(Seq2)

[is 21’s id eval(�,<) = true

〈<, if � then 21 else 22〉
;>2 (�) ·[
−−−−−−→ 〈<,21〉

(If-True)

[is 22’s id eval(�,<) = false

〈<, if � then 21 else 22〉
;>2 (�) ·[
−−−−−−→ 〈<,22〉

(If-False)

Fig. 7. Language semantics with emi�ed events 4 .

di�erent memory footprints in cache when running on di�erent secret values. Hence, each small-

step evaluation rule has the form of 〈<, (〉
4
−→ 〈<′, (′〉 where event 4 tracks the memory addresses

being accessed by the evaluation step.
We assume that each memory access in the source code has a unique id, denoted by [. The

semantics for the source language syntax of Figure 3 is shown in Figure 7, where most small-
step semantics rules are standard. For each expression �, the auxiliary function ;>2 (�) collects all
memory addresses used in �. Depending on the LHS of an assignment, the evaluation step either
issues no memory address (when the LHS is a local variable stored in a register), issues the value
stored in - (when the LHS is a pointer deference), or issues the address associated with an array
element (when LHS is an array element). For an if-statement, the tag of either the true or false
branch is also included in events, depending on the truth value of the branch condition �. Note
that when instruction cache is irrelevant, we can also omit branch tags in the semantics.

C LINEARIZATION

DSA adopts data-�ow linearization technique from Constantine [Borrello et al. 2021] to e�ciently
touch each concrete memory address identi�ed in the enumeration step. In particular, DSA inherits
three types of subroutines for data-�ow linearization: simple, gather, and bulk. Under each type,
one subroutine performs oblivious load and the other subroutine performs oblivious store [Borrello
et al. 2021].

• A simple subroutine uses a for-loop to iterate through a set of addresses. The pseudocode for
memory load is shown in Figure 8, which takes in the pointer (ptr) that the original memory
access operates on, and an array of addresses (DS) representing di�erential set. It loads the
content of each address in the di�erential set at line 4 and uses a conditional expression at
line 5 to keep the true value loaded from the real address ptr. For memory store, each address
is loaded into a local variable. The variable is conditionally updated depending on whether

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 274. Publication date: October 2023.

274:26 Cong Ma, Dinghao Wu, Gang Tan, Mahmut Taylan Kandemir, and Danfeng Zhang

1 int secure_load(ptr , DS){

2 int res = 0;

3 for (addr in DS) {

4 int val = load(addr);

5 res = (addr == ptr) ? val : res;

6 }

7 }
Fig. 8. Simple Secure Load Subroutine

Ch
ron

os/
aes

Ch
ron

os/
des

Ch
ron

os/
des

3

Ch
ron

os/
an
ub
is

Ch
ron

os/
cas

t5

Ch
ron

os/
cas

t6

Ch
ron

os/
fcr
yp
t

Ch
ron

os/
kh
aza

d

S-C
P/a

es-
cor

e

S-C
P/c

ast
-ss
l

Lib
gcr

yp
t/c
am

ell
ia

Lib
gcr

yp
t/d
es

Lib
gcr

yp
t/s
eed

Lib
gcr

yp
t/tw

o�
sh

Ra
cco

on
/hi
sto

gra
m

Ra
cco

on
/m
atm

ul-

Py
cry

pto
/ae

s

Py
cry

pto
/ar
c4

Py
cry

pto
/bl
ow

�sh
-

Py
cry

pto
/ca

st

Py
cry

pto
/de

s3

B/R
el/
tls-

rem
pa
d-l
uk
13

B/R
el/
aes

-bi
g

B/R
el/
des

-ta
b

wo
lfS
SL
-

Ge
om

etr
ic M

ean

0

0.5

1

1.5

2

2.5

R
u
n
ti
m
e
O
v
er
h
ea
d

Constantine

DSA

Fig. 9. Mitigation Results: Benchmarks marked with "-" are modified to have smaller loop bounds. Due to the

reduction in loop bound, wolfSSL used in evaluation do not contain sensitive branches or sensitive memory

accesses.

the memory address under the iteration matches the real address, and the value (which may
or may not have changed) is then stored back.
• A gather subroutine is similar to a simple subroutine, except that it utilizes gather/scatter
instruction from SIMD extension to touch multiple memory locations in parallel and uses a
mask operation to wipe out bits in the vector except the bits that are from the real address
• A bulk subroutine is suitable for loading/storing sequential data to and from the memory; it
similarly utilizes SIMD instructions to load/store a trunk of continuous memory in a oblivious
way.

Following the strategy of Constantine, DSA picks a load/store subroutine from the three types of
subroutines based on the sparsity and the size of the di�erential set to be mitigated. If the average
distance between elements in the di�erential set is smaller or equal to 16 bytes, DSA uses bulk
subroutines since they can e�ciently operate on a continuous region of memory. If there are fewer
than 8 elements in the di�erential set, DSA uses simple subroutines to avoid the overhead of vector
instructions. Otherwise, DSA uses gather subroutines since it can simultaneously load memory
from a set of addresses, so it can deal with sparse di�erential set e�ciently.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 274. Publication date: October 2023.

�antifying and Mitigating Cache Side Channel Leakage with Di�erential Set 274:27

D COMPLETE MITIGATION RESULTS

Figure 9 presents mitigation results on benchmarks that do not contain sensitive branches. In
most cases, Constantine and DSA performs similarly, the noticeable di�erences are discussed in
Section 6.4. For some benchmarks, we reduce the unrolling factor due to scalability issue. These
are marked at the end of their names with -. We note that wolfSSL does not contain any sensitive
branches or sensntive memory accesses due to reduced loop bound.

REFERENCES

Onur Aciicmez and Jean-Pierre Seifert. 2007. Cheap Hardware Parallelism Implies Cheap Security. InWorkshop on Fault

Diagnosis and Tolerance in Cryptography (FDTC 2007). 80–91. https://doi.org/10.1109/FDTC.2007.16

José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and Michael Emmi. 2016. Verifying constant-time

implementations. In 25th USENIX Security Symposium (USENIX Security 16). 53–70.

Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Tachio Terauchi, and Shiyi Wei. 2017. Decomposition

Instead of Self-Composition for Proving the Absence of Timing Channels. In Proceedings of the 38th ACM SIGPLAN Con-

ference on Programming Language Design and Implementation (Barcelona, Spain) (PLDI 2017). Association for Computing

Machinery, New York, NY, USA, 362–375. https://doi.org/10.1145/3062341.3062378

Qinkun Bao, Zihao Wang, Xiaoting Li, James R. Larus, and DinghaoWu. 2021. Abacus: A Tool for Precise Side-Channel Anal-

ysis. In 2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion).

238–239. https://doi.org/10.1109/ICSE-Companion52605.2021.00110

Eli Bendersky. 2022. pysparser. https://github.com/eliben/pycparser. https://github.com/eliben/pycparser

Joseph Bonneau and Ilya Mironov. 2006. Cache-Collision Timing Attacks Against AES. In Cryptographic Hardware and

Embedded Systems - CHES 2006, Louis Goubin and Mitsuru Matsui (Eds.). Lecture Notes in Computer Science, Vol. 4249.

Springer Berlin Heidelberg, 201–215. https://doi.org/10.1007/11894063_16

Pietro Borrello, Daniele ConoD’Elia, Leonardo Querzoni, and Cristiano Giu�rida. 2021. Constantine: Automatic Side-Channel

Resistance Using E�cient Control and Data Flow Linearization. In Proceedings of the 2021 ACM SIGSAC Conference

on Computer and Communications Security (Virtual Event, Republic of Korea) (CCS ’21). Association for Computing

Machinery, New York, NY, USA, 715–733. https://doi.org/10.1145/3460120.3484583

Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. 2017.

Software Grand Exposure: SGX Cache Attacks Are Practical. In Proceedings of the 11th USENIX Conference on O�ensive

Technologies (WOOT’17). 11–11.

Robert Brotzman, Shen Liu, Danfeng Zhang, Gang Tan, and Mahmut Kandemir. 2019. CaSym: Cache Aware Symbolic

Execution for Side Channel Detection and Mitigation. In 2019 IEEE Symposium on Security and Privacy (SP). 505–521.

https://doi.org/10.1109/SP.2019.00022

Robert Brotzman, Danfeng Zhang, Mahmut Taylan Kandemir, and Gang Tan. 2021. SpecSafe: Detecting Cache Side

Channels in a Speculative World. Proc. ACM Program. Lang. 5, OOPSLA, Article 129 (oct 2021), 28 pages. https:

//doi.org/10.1145/3485506

Sunjay Cauligi, Craig Disselkoen, Klaus v. Gleissenthall, Dean Tullsen, Deian Stefan, Tamara Rezk, and Gilles Barthe. 2020.

Constant-Time Foundations for the New Spectre Era. In Proceedings of the 41st ACM SIGPLAN Conference on Programming

Language Design and Implementation (London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY,

USA, 913–926. https://doi.org/10.1145/3385412.3385970

Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown, Riad S. Wahby, John Renner, Benjamin Grégoire, Gilles

Barthe, Ranjit Jhala, and Deian Stefan. 2019. FaCT: A DSL for Timing-Sensitive Computation. In Proceedings of the

40th ACM SIGPLAN Conference on Programming Language Design and Implementation (Phoenix, AZ, USA) (PLDI 2019).

Association for Computing Machinery, New York, NY, USA, 174–189. https://doi.org/10.1145/3314221.3314605

Jia Chen, Yu Feng, and Isil Dillig. 2017. Precise Detection of Side-Channel Vulnerabilities Using Quantitative Cartesian Hoare

Logic. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (Dallas, Texas, USA)

(CCS ’17). Association for Computing Machinery, New York, NY, USA, 875–890. https://doi.org/10.1145/3133956.3134058

Edmund Clarke, Daniel Kroening, and Flavio Lerda. 2004. A Tool for Checking ANSI-C Programs. In Tools and Algorithms

for the Construction and Analysis of Systems (TACAS 2004) (Lecture Notes in Computer Science, Vol. 2988), Kurt Jensen and

Andreas Podelski (Eds.). Springer, 168–176. https://doi.org/10.1007/978-3-540-24730-2_15

Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De Sutter. 2009. Practical Mitigations for Timing-

Based Side-Channel Attacks on Modern x86 Processors. In 2009 30th IEEE Symposium on Security and Privacy. 45–60.

https://doi.org/10.1109/SP.2009.19

Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. 2020. Binsec/Rel: E�cient Relational Symbolic Execution for

Constant-Time at Binary-Level. In 2020 IEEE Symposium on Security and Privacy (SP). 1021–1038. https://doi.org/10.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 274. Publication date: October 2023.

https://doi.org/10.1109/FDTC.2007.16
https://doi.org/10.1145/3062341.3062378
https://doi.org/10.1109/ICSE-Companion52605.2021.00110
https://github.com/eliben/pycparser
https://doi.org/10.1007/11894063_16
https://doi.org/10.1145/3460120.3484583
https://doi.org/10.1109/SP.2019.00022
https://doi.org/10.1145/3485506
https://doi.org/10.1145/3485506
https://doi.org/10.1145/3385412.3385970
https://doi.org/10.1145/3314221.3314605
https://doi.org/10.1145/3133956.3134058
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1109/SP.2009.19
https://doi.org/10.1109/SP40000.2020.00074
https://doi.org/10.1109/SP40000.2020.00074

274:28 Cong Ma, Dinghao Wu, Gang Tan, Mahmut Taylan Kandemir, and Danfeng Zhang

1109/SP40000.2020.00074

Leonardo DeMoura and Nikolaj Bjørner. 2008. Z3: An E�cient SMT Solver. In Proceedings of the 14th International Conference

on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’08). https://doi.org/10.1007/978-3-540-

78800-3_24

Goran Doychev, Dominik Feld, Boris Kopf, Laurent Mauborgne, and Jan Reineke. 2013. CacheAudit: A Tool for the Static

Analysis of Cache Side Channels. In 22nd USENIX Security Symposium (USENIX Security 13). USENIX Association,

Washington, D.C., 431–446. https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/doychev

Goran Doychev and Boris Köpf. 2017. Rigorous Analysis of Software Countermeasures against Cache Attacks. In Proceedings

of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation (Barcelona, Spain) (PLDI

2017). Association for Computing Machinery, New York, NY, USA, 406–421. https://doi.org/10.1145/3062341.3062388

Edward W. Felten and Michael A. Schneider. 2000. Timing Attacks on Web Privacy. In Proceedings of the 7th ACM Conference

on Computer and Communications Security (Athens, Greece) (CCS ’00). Association for Computing Machinery, New York,

NY, USA, 25–32. https://doi.org/10.1145/352600.352606

Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. 2017. Cache Attacks on Intel SGX. In Proceedings of

the 10th European Workshop on Systems Security (Belgrade, Serbia) (EuroSec’17). Association for Computing Machinery,

New York, NY, USA, Article 2, 6 pages. https://doi.org/10.1145/3065913.3065915

David Gullasch, Endre Bangerter, and Stephan Krenn. 2011. Cache Games – Bringing Access-Based Cache Attacks on AES

to Practice. In 2011 IEEE Symposium on Security and Privacy. 490–505. https://doi.org/10.1109/SP.2011.22

Yaoqi Jia, Xinshu Dong, Zhenkai Liang, and Prateek Saxena. 2015. I Know Where You’ve Been: Geo-Inference Attacks via

the Browser Cache. IEEE Internet Computing 19, 1 (2015), 44–53. https://doi.org/10.1109/MIC.2014.103

Robert Kotcher, Yutong Pei, Pranjal Jumde, and Collin Jackson. 2013. Cross-Origin Pixel Stealing: Timing Attacks Using CSS

Filters. In Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security (Berlin, Germany) (CCS

’13). Association for Computing Machinery, New York, NY, USA, 1055–1062. https://doi.org/10.1145/2508859.2516712

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-Level Cache Side-Channel Attacks are

Practical. In 2015 IEEE Symposium on Security and Privacy. 605–622. https://doi.org/10.1109/SP.2015.43

Gavin Lowe. 2002. Quantifying Information Flow. In 15th IEEE Computer Security FoundationsWorkshop (CSFW-15 2002), 24-26

June 2002, Cape Breton, Nova Scotia, Canada. IEEE Computer Society, 18–31. https://doi.org/10.1109/CSFW.2002.1021804

Cong Ma, Dinghao Wu, Gang Tan, Mahmut Taylan Kandemir, and Danfeng Zhang. 2023. Quantifying and Mitigating Cache

Side Channel Leakage with Di�erential Set. https://doi.org/10.5281/zenodo.8418984

David Molnar, Matt Piotrowski, David Schultz, and David A. Wagner. 2005. The Program Counter Security Model: Automatic

Detection and Removal of Control-Flow Side Channel Attacks. In Information Security and Cryptology - ICISC 2005, 8th

International Conference, Seoul, Korea, December 1-2, 2005, Revised Selected Papers (Lecture Notes in Computer Science,

Vol. 3935), Dongho Won and Seungjoo Kim (Eds.). Springer, 156–168. https://doi.org/10.1007/11734727_14

James Newsome, Stephen McCamant, and Dawn Song. 2009. Measuring Channel Capacity to Distinguish Undue In�uence. In

Proceedings of the ACM SIGPLAN Fourth Workshop on Programming Languages and Analysis for Security (Dublin, Ireland)

(PLAS ’09). Association for Computing Machinery, New York, NY, USA, 73–85. https://doi.org/10.1145/1554339.1554349

Yannic Noller and Saeid Tizpaz-Niari. 2021. QFuzz: Quantitative Fuzzing for Side Channels. In Proceedings of the 30th ACM

SIGSOFT International Symposium on Software Testing and Analysis (Virtual, Denmark) (ISSTA 2021). Association for

Computing Machinery, New York, NY, USA, 257–269. https://doi.org/10.1145/3460319.3464817

Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Countermeasures: The Case of AES. 3860 (2006),

1–20. https://doi.org/10.1007/11605805_1

Corina S. Pasareanu, Quoc-Sang Phan, and Pasquale Malacaria. 2016. Multi-run Side-Channel Analysis Using Symbolic

Execution and Max-SMT. In IEEE 29th Computer Security Foundations Symposium, CSF 2016, Lisbon, Portugal, June 27 -

July 1, 2016. IEEE Computer Society, 387–400. https://doi.org/10.1109/CSF.2016.34

Colin Percival. 2005. Cache missing for fun and pro�t. In BSDCan.

Quoc-Sang Phan, Lucas Bang, Corina S. Pasareanu, Pasquale Malacaria, and Tev�k Bultan. 2017. Synthesis of Adaptive

Side-Channel Attacks. In 2017 IEEE 30th Computer Security Foundations Symposium (CSF). 328–342. https://doi.org/10.

1109/CSF.2017.8

Ashay Rane, Calvin Lin, and Mohit Tiwari. 2015. Raccoon: Closing digital side-channels through obfuscated execution. In

24th {USENIX} Security Symposium ({USENIX} Security 15). 431–446.

Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009. Hey, You, Get o� of My Cloud: Exploring

Information Leakage in Third-Party Compute Clouds. In Proceedings of the 16th ACM Conference on Computer and

Communications Security (Chicago, Illinois, USA) (CCS ’09). Association for Computing Machinery, New York, NY, USA,

199–212. https://doi.org/10.1145/1653662.1653687

Isabell Schmitt and Sebastian Schinzel. 2012. WAFFle: Fingerprinting Filter Rules of Web Application Firewalls. In Proceedings

of the 6th USENIX Workshop on O�ensive Technologies (WOOT). 34–40.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 274. Publication date: October 2023.

https://doi.org/10.1109/SP40000.2020.00074
https://doi.org/10.1109/SP40000.2020.00074
https://doi.org/10.1109/SP40000.2020.00074
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/doychev
https://doi.org/10.1145/3062341.3062388
https://doi.org/10.1145/352600.352606
https://doi.org/10.1145/3065913.3065915
https://doi.org/10.1109/SP.2011.22
https://doi.org/10.1109/MIC.2014.103
https://doi.org/10.1145/2508859.2516712
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1109/CSFW.2002.1021804
https://doi.org/10.5281/zenodo.8418984
https://doi.org/10.1007/11734727_14
https://doi.org/10.1145/1554339.1554349
https://doi.org/10.1145/3460319.3464817
https://doi.org/10.1007/11605805_1
https://doi.org/10.1109/CSF.2016.34
https://doi.org/10.1109/CSF.2017.8
https://doi.org/10.1109/CSF.2017.8
https://doi.org/10.1145/1653662.1653687

�antifying and Mitigating Cache Side Channel Leakage with Di�erential Set 274:29

Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan Mangard. 2017. Malware guard extension:

Using SGX to conceal cache attacks. In International Conference on Detection of Intrusions and Malware, and Vulnerability

Assessment. Springer, 3–24. https://doi.org/10.1007/978-3-319-60876-1_1

Geo�rey Smith. 2009. On the foundations of quantitative information �ow. Foundations of Software Science and Computational

Structures 5504 (2009), 288–302. https://doi.org/10.1007/978-3-642-00596-1_21

Mate Soos, Stephan Gocht, and Kuldeep S. Meel. 2020. Tinted, Detached, and Lazy CNF-XOR Solving and Its Applications

to Counting and Sampling. In Computer Aided Veri�cation: 32nd International Conference, CAV 2020, Los Angeles, CA,

USA, July 21–24, 2020, Proceedings, Part I (Los Angeles, CA, USA). Springer-Verlag, Berlin, Heidelberg, 463–484. https:

//doi.org/10.1007/978-3-030-53288-8_22

STAC 2017. DARPA space/time analysis for cybersecurity (STAC) program. http://www.darpa.mil/program/ space-time-

analysis-for-cybersecurity. http://www.darpa.mil/program/space-time-analysis-for-cybersecurity

Emil Stefanov, Marten Van Dijk, Elaine Shi, T.-H. Hubert Chan, Christopher Fletcher, Ling Ren, Xiangyao Yu, and Srinivas

Devadas. 2018. Path ORAM: An Extremely Simple Oblivious RAM Protocol. J. ACM 65, 4, Article 18 (apr 2018), 26 pages.

https://doi.org/10.1145/3177872

Paul Stone. 2013. Pixel Perfect Timing Attacks with HTML5. https://www.contextis.com/media/downloads/Pixel_Perfect_

Timing_Attacks_with_HTML5_Whitepaper.pdf.

Eran Tromer, DagArne Osvik, and Adi Shamir. 2010. E�cient Cache Attacks on AES, and Countermeasures. Journal of

Cryptology 23, 1 (2010), 37–71. https://doi.org/10.1007/s00145-009-9049-y

Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2017. SGX-Step: A Practical Attack Framework for Precise Enclave Execution

Control. In Proceedings of the 2nd Workshop on System Software for Trusted Execution (Shanghai, China) (SysTEX’17).

Association for Computing Machinery, New York, NY, USA, Article 4, 6 pages. https://doi.org/10.1145/3152701.3152706

Tom Van Goethem, Wouter Joosen, and Nick Nikiforakis. 2015. The Clock is Still Ticking: Timing Attacks in the Modern

Web. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security (Denver, Colorado,

USA) (CCS ’15). Association for Computing Machinery, New York, NY, USA, 1382–1393. https://doi.org/10.1145/2810103.

2813632

Shuai Wang, Yuyan Bao, Xiao Liu, Pei Wang, Danfeng Zhang, and Dinghao Wu. 2019. Identifying Cache-Based Side

Channels through Secret-Augmented Abstract Interpretation. In 28th USENIX Security Symposium (USENIX Security 19).

657–674.

Shuai Wang, Pei Wang, Xiao Liu, Danfeng Zhang, and Dinghao Wu. 2017. CacheD: Identifying Cache-Based Timing

Channels in Production Software. In Proceedings of the 26th USENIX Security Symposium (USENIX Security 17). USENIX

Association, Vancouver, BC, Canada, 235–252.

Samuel Weiser, Andreas Zankl, Raphael Spreitzer, Katja Miller, Stefan Mangard, and Georg Sigl. 2018. DATA–Di�erential

Address Trace Analysis: Finding Address-based Side-Channels in Binaries. In 27th USENIX Security Symposium (USENIX

Security 18). 603–620.

Zhenyu Wu, Zhang Xu, and Haining Wang. 2012. Whispers in the Hyper-space: High-speed Covert Channel Attacks in the

Cloud. In Presented as part of the 21st USENIX Security Symposium (USENIX Security 12). 159–173.

Yuan Xiao, Mengyuan Li, Sanchuan Chen, and Yinqian Zhang. 2017. STACCO: Di�erentially Analyzing Side-Channel

Traces for Detecting SSL/TLS Vulnerabilities in Secure Enclaves. In Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security (Dallas, Texas, USA) (CCS ’17). Association for Computing Machinery, New York,

NY, USA, 859–874. https://doi.org/10.1145/3133956.3134016

Yunjing Xu, Michael Bailey, Farnam Jahanian, Kaustubh Joshi, Matti Hiltunen, and Richard Schlichting. 2011. An Exploration

of L2 Cache Covert Channels in Virtualized Environments. In Proceedings of the 3rd ACM Workshop on Cloud Computing

Security Workshop (Chicago, Illinois, USA) (CCSW ’11). Association for Computing Machinery, New York, NY, USA,

29–40. https://doi.org/10.1145/2046660.2046670

Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution, Low Noise, L3 Cache Side-Channel Attack.

In Proceedings of the 23rd USENIX Conference on Security Symposium (San Diego, CA) (SEC’14). USENIX Association,

USA, 719–732.

Y. Yarom, D. Genkin, and N. Heninger. 2017. CacheBleed: a timing attack on OpenSSL constant-time RSA. J Cryptogr Eng 7

(2017), 99–112. https://doi.org/10.1007/s13389-017-0152-y

Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2012. Cross-VM Side Channels and Their Use to Extract

Private Keys. In Proceedings of the 2012 ACM Conference on Computer and Communications Security (Raleigh, North

Carolina, USA) (CCS ’12). Association for Computing Machinery, New York, NY, USA, 305–316. https://doi.org/10.1145/

2382196.2382230

Received 2023-04-14; accepted 2023-08-27

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 274. Publication date: October 2023.

https://doi.org/10.1007/978-3-319-60876-1_1
https://doi.org/10.1007/978-3-642-00596-1_21
https://doi.org/10.1007/978-3-030-53288-8_22
https://doi.org/10.1007/978-3-030-53288-8_22
http://www.darpa.mil/program/ space-time-analysis-for-cybersecurity
https://doi.org/10.1145/3177872
https://www.contextis.com/media/downloads/Pixel_Perfect_Timing_Attacks_with_HTML5_Whitepaper.pdf
https://www.contextis.com/media/downloads/Pixel_Perfect_Timing_Attacks_with_HTML5_Whitepaper.pdf
https://doi.org/10.1007/s00145-009-9049-y
https://doi.org/10.1145/3152701.3152706
https://doi.org/10.1145/2810103.2813632
https://doi.org/10.1145/2810103.2813632
https://doi.org/10.1145/3133956.3134016
https://doi.org/10.1145/2046660.2046670
https://doi.org/10.1007/s13389-017-0152-y
https://doi.org/10.1145/2382196.2382230
https://doi.org/10.1145/2382196.2382230

	Abstract
	1 Introduction
	2 Background and Threat Model
	2.1 Cache Side Channel
	2.2 Threat Model

	3 Overview
	3.1 Quantification of Cache Side Channels
	3.2 Mitigation of Cache Side Channels
	3.3 Differential Set

	4 Differential Set
	4.1 Execution Trace
	4.2 Quantifying Cache Side Channel
	4.3 Differential Set
	4.4 Soundness of Differential Sets

	5 DSA
	5.1 Symbolic Inputs, Addresses and AS
	5.2 Alignment Algorithm
	5.3 Quantification
	5.4 Mitigation

	6 Implementation and Evaluation
	6.1 Implementation
	6.2 Evaluation Setup
	6.3 Quantification Results
	6.4 Mitigation Results

	7 Related Work
	8 Conclusion and Future Work
	A Proof of Theorem 1
	B Formalizing Trace Semantics
	C Linearization
	D Complete Mitigation Results
	References

